
D1.3 Special Purpose MPC Protocols

Frank Blom(TUE), Niek J. Bouman(TUE), Anders Dalskov(AU), Tore
Kasper Frederiksen(ALX), Claudio Orlandi(AU), Berry

Schoenmakers(TUE), Mark Simkin(AU), Nikolaj Volgushev(ALX), Niels
de Vreede(TUE)

The project SODA has received funding
from the European Union’s Horizon 2020
research and innovation programme under grant
agreement No 731583.



H2020-LEIT-ICT 731583 SODA Deliverable D1.3

30.09.2019 D1.3 Special Purpose MPC Protocols 2



Project Information

Scalable Oblivious Data Analytics
Project number: 731583
Strategic objective: H2020-ICT-2016-1
Starting date: 2017-01-01
Ending date: 2019-12-31
Website: https://www.soda-project.eu/

Document Information

Title: D1.3 Special Purpose MPC Protocols
ID: D1.3 Type: R Dissemination level: PU

Month: M33 Release date: 30.09.2019

Contributors, Editor & Reviewer Information

Contributors (person/partner) Frank Blom(TUE): Chapter 4
Niek J. Bouman(TUE): Chapter 4
Anders Dalskov(AU): Chapter 3
Tore Kasper Frederiksen(ALX): Chapter 1
Claudio Orlandi(AU): Chapter 2
Berry Schoenmakers(TUE): Chapter 4 Peter Scholl
Mark Simkin(AU): Chapter 2
Nikolaj Volgushev(ALX): Chapter 1
Niels de Vreede(TUE): Chapter 4

Editor (person/partner) Peter Scholl (AU)
Reviewer (person/partner) Niek J. Bouman (TUE), Paul Koster (PHI)



H2020-LEIT-ICT 731583 SODA Deliverable D1.3

30.09.2019 D1.3 Special Purpose MPC Protocols 4



H2020-LEIT-ICT 731583 SODA Deliverable D1.3

Release History

Release Date issued Release description / changes made
1.0 30 September, 2019 First release to EU

30.09.2019 D1.3 Special Purpose MPC Protocols 5



H2020-LEIT-ICT 731583 SODA Deliverable D1.3

SODA Consortium

Full Name Abbreviated Name Country

Philips Electronics Nederland B.V. PHI Netherlands

Alexandra Institute ALX Denmark

Aarhus University AU Denmark

Göttingen University GU Germany

Eindhoven University of Technology TUE Netherlands

Table 1: Consortium Members

30.09.2019 D1.3 Special Purpose MPC Protocols 6



H2020-LEIT-ICT 731583 SODA Deliverable D1.3

Executive Summary

This deliverable presents research carried out in the second half of the SODA project, as part of Work
Package 1. The overall goal of Work Package 1 is to improve the state-of-the-art in cryptographic
protocols for private big data analytics. This is accomplished in this deliverable by designing and
improving special-purpose protocols for dedicated secure computation tasks related to data analytics,
and building upon and extending previous work in the SODA project by WP1 and WP2 members.

Firstly, we present implementations and optimizations of multi-party computation (MPC) proto-
cols over rings that were theoretically constructed and reported on in the previous deliverable, and
study some specialized tasks which demonstrate their advantages over previous protocols. We also
further study the concrete application of privacy-preserving machine learning by presenting efficient
protocols for neural network evaluation and ridge regression, and report on their performance when
scaling to large networks or large datasets with millions of records. Finally, we look at a new approach
to carrying out the preprocessing phase of MPC protocols, which drastically reduces communication
for the specific task of preprocessing a large number of oblivious transfers.

Applications of MPC Over Rings for Dishonest Majority. This chapter builds upon SPDZ2k ,
which is a new protocol for actively secure MPC against a dishonest majority over rings, developed
previously as part of SODA. In this work we demonstrate the advantages that working over rings,
instead of fields, can bring to applications of secure computation. We do this by implementing and
optimizing SPDZ2k , and designing and implementing efficient protocols for the specific tasks of equal-
ity test, comparison, and truncation over rings. We further show that these operations be be applied to
privacy-preserving machine learning, and indeed significantly outperform their field-based competi-
tors. In particular, we implement and benchmark oblivious algorithms for decision tree and support
vector machine (SVM) evaluation.

Improved MPC Over Rings for Honest Majority. This chapter presents better protocols for the
important setting of actively secure three-party computation over rings with an honest majority, with
native support for arithmetic on 32- and 64-bit words. Our starting point is the novel compiler of
Damgård et al. by SODA researchers from CRYPTO 2018, and we improve it in several ways: First,
we present an improved version of the compiler which reduces the online communication complexity
by a factor of 2. Next, we replace their preprocessing protocol (which performs arithmetic modulo
a large prime) with a more efficient preprocessing which only performs arithmetic modulo powers
of two (and is therefore more efficient). And finally, we present a novel protocol which replaces
the preprocessing phase with a "postprocessing" check. The protocols we construct offer different
efficiency tradeoffs and can therefore outperform each other in different deployment settings.

We also provide a fully-fledged implementation of our protocols, and extensive benchmarks show-
ing their scalability. Concretely, we achieve a throughput of 3 million 64-bit multiplications per sec-
ond with each of the three parties located on a different continent and 10 million in the same location,
thus achieving the most efficient implementation of a three-party computation protocol for arithmetic
circuits modulo 264 with active security.

Secure Evaluation of Quantized Neural Networks. Convolutional neural networks (CNNs) lie at
the heart of many data analytics applications like image classification and speech recognition. The
need for evaluating such models whilst preserving the privacy of the input provided increases as
the models are used for more information-sensitive tasks like DNA analysis or facial recognition.

30.09.2019 D1.3 Special Purpose MPC Protocols 7



H2020-LEIT-ICT 731583 SODA Deliverable D1.3

Research on evaluating CNNs securely has been very active during the last couple of years, with
frameworks like SecureNN [128], which can perform evaluation of some CNNs with a multplicative
overhead of only 17–33 with respect to evaluation in the clear.

We contribute to this line of research by introducing a technique from the machine learning do-
main, namely quantization, which allows us to scale secure evaluation of CNNs to much larger net-
works without the accuracy loss that could happen by adapting the network to the MPC setting. Quan-
tization is motivated by the deployment of ML models in resource-constrained devices, and we show
it to be useful in the MPC setting as well. Our results show that it is possible to evaluate realistic
models—specifically Google’s MobileNets line of models for image recognition—within seconds.

Our performance gain can be mainly attributed to two key ingredients: One is the use of the three-
party MPC protocol based on replicated secret sharing, whose multiplication only requires sending
one number per party. Moreover, it allows to evaluate arbitrary long dot products at the same com-
munication cost of a single multiplication, which facilitates matrix multiplications considerably. The
second main ingredient is the use of arithmetic modulo 264 , for which we develop a set of primi-
tives of indepedent interest that are necessary for the quantization like comparison and truncation by
a secret shift.

Efficient Secure Ridge Regression from Randomized Gaussian Elimination. In this chapter we
present a practical protocol for secure ridge regression. We develop the necessary secure linear algebra
tools, using only basic arithmetic over prime fields. In particular, we will show how to solve linear
systems of equations and compute matrix inverses efficiently, using appropriate secure random self-
reductions of these problems. The distinguishing feature of our approach is that the use of secure
fixed-point arithmetic is avoided entirely, while circumventing the need for rational reconstruction at
any stage as well.

We demonstrate the potential of our protocol in a standard setting for information-theoretically
secure multiparty computation, tolerating a dishonest minority of passively corrupt parties. Using
the MPyC framework, which is based on threshold secret sharing over finite fields, we show how
to handle large datasets efficiently, achieving practically the same root-mean-square errors as Scikit-
learn. Moreover, we do not assume that any (part) of the datasets is held privately by any of the parties,
which makes our protocol much more versatile than existing solutions.

Efficient Secure Computation with Silent Preprocessing. The preprocessing phase of an MPC
protocol requires generating some correlated randomness, which typically scales with the size of
the function being computed. For very large-scale computations, existing techniques to generate
the correlated randomness require a huge amount of communication and storage. A natural tool for
addressing these limitations is a pseudorandom correlation generator (PCG). A PCG allows two or
more parties to securely generate long sources of useful correlated randomness via a local expansion
of correlated short seeds and no interaction. PCGs enable MPC with silent preprocessing, where a
small amount of interaction used for securely sampling the seeds is followed by silent local generation
of correlated pseudorandomness.

We present the first concretely efficient PCG for oblivious transfer (OT) correlations, which can be
plugged in to reduce the overall communication costs of higher-level protocols such as secret-sharing
based MPC and private set intersection. The security of our construction is based on a variant of the
learning parity with noise assumption and any correlation-robust hash function. We also implemented,
optimized, and benchmarked our actively secure silent OT extension protocol, demonstrating that it
offers a more attractive alternative to the OT extension protocol of Ishai et al. [85] in many realistic

30.09.2019 D1.3 Special Purpose MPC Protocols 8



H2020-LEIT-ICT 731583 SODA Deliverable D1.3

settings.

30.09.2019 D1.3 Special Purpose MPC Protocols 9



H2020-LEIT-ICT 731583 SODA Deliverable D1.3

About this Document

Role of the Deliverable

The purpose of this deliverable is to study cryptographic protocols for specific tasks, which can be
applied to improve the practicality of secure computation for performing analytics on large volumes
of data. The deliverable contains several research results on specific applications related to privacy-
preserving machine learning, as well as further study, optimization and implementation of protocols
developed in previous stages of SODA.

Relationship to Other SODA Deliverables

This deliverable follows on from D1.2 and D2.2, by exploring further the protocols and applications
which were developed for those tasks. In particular, Chapters 1–2 build upon protocols for secure
computation over rings which we developed in D1.2; Chapters 3 and 4 relate to data analytics applica-
tions we first studied in D2.2; and Chapter 5 concerns secure computation in the preprocessing model,
which we studied in D1.2. Compared with D1.2, this deliverable lies more on the practical side, with
a focus on optimizations and implementations instead of theoretical results.

Structure of this Document

We begin by continuing the study of secure computation over rings, which we began in deliverable
D1.2. In Chapter 1, we study the SPDZ2k protocol from the perspective of applications, and show
how to exploit the fact we are working mod 2k to improve several important building blocks and ap-
plications of MPC. Chapter 2 looks at our compiler for actively secure MPC over rings from D1.2; we
optimize this for the special case of 3-party computation and present implementation results, showing
it performs favourably to the state-of-the-art. In Chapter 3, we look at the specific application of se-
cure evaluation of neural networks, and present general techniques for optimizing this in MPC, whilst
only relying on off-the-shelf trained models. Chapter 4 shows how to securely train a ridge regres-
sion model in MPC, using randomized Gaussian elimination. We evaluated the performance of our
solution by implementing the secure training protocol and testing it on datasets with up to 4 million
records. Lastly, in Chapter 5, we look at MPC with silent preprocessing, which is a new approach to
carrying out the preprocessing phase of MPC protocols with much less communication. For the spe-
cific case of preprocessing oblivious transfers, we present a highly efficient construction with active
security, and present implementation results showing it outperforms previous approaches in practice.

30.09.2019 D1.3 Special Purpose MPC Protocols 10



Table of Contents

1 Applications of MPC Over Rings for Dishonest Majority 13
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.1.1 Computational Models in Multi-Party Computation . . . . . . . . . . . . . . 13
1.1.2 The SPDZ2k Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.1.4 Overview of our Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.1.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.2.2 Background on SPDZ2k Shares and Core Protocols . . . . . . . . . . . . . . 16
1.2.3 Preprocessing Material in SPDZ2k . . . . . . . . . . . . . . . . . . . . . . . 17

1.3 Converting Between Binary and Arithmetic Sharings . . . . . . . . . . . . . . . . . 18
1.3.1 Binary sharings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.3.2 Efficient binary triple generation . . . . . . . . . . . . . . . . . . . . . . . . 18
1.3.3 Arithmetic to Binary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.3.4 Binary to Arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.4.1 Decision Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.4.2 Support Vector Machines (SVMs) . . . . . . . . . . . . . . . . . . . . . . . 22

1.5 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.5.1 Online Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.5.2 Offline Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
1.5.3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2 Improved MPC Over Rings for Honest Majority 29
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.2 Auxiliary Ideal Functionalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.3 Extension of the Compiler by Damgård et al. . . . . . . . . . . . . . . . . . . . . . 33

2.3.1 A New Compiler for Protocols with Weak Privacy . . . . . . . . . . . . . . 34
2.4 Implementation and Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.4.1 Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.4.2 Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

11



H2020-LEIT-ICT 731583 SODA Deliverable D1.3

3 Secure Evaluation of Quantized Neural Networks 39
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.1.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.1.2 Quantization in prior work . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2 Quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2.1 TFLite Quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3 Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.3.1 Protocol details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4 Efficient Secure Ridge Regression from Randomized Gaussian Elimination 47
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2.1 Roadmap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.3 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.4 Ridge Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.5 MPC Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.6 Solving Systems of Linear Equations . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.7 Secure Linear Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.7.1 Secure Determinant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.7.2 Secure Matrix Inversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.7.3 Secure Linear Solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.8 Secure Ridge Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.9 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.10 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5 Efficient Secure Computation with Silent Preprocessing 58
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.1.1 Our Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.1.2 Technical Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.2 Performance Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.2.1 Instantiating the Code and Parameters . . . . . . . . . . . . . . . . . . . . . 63
5.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Bibliography 66

30.09.2019 D1.3 Special Purpose MPC Protocols 12



Chapter 1

Applications of MPC Over Rings for
Dishonest Majority

This chapter is based on the paper New Primitives for Actively-Secure MPC Over Rings
with Applications to Private Machine Learning co-authored by SODA researchers, pub-
lished at IEEE Security & Privacy 2019 [50].

1.1 Introduction

1.1.1 Computational Models in Multi-Party Computation

Different multi-party computation (MPC) protocols may require different representations of the func-
tion being computed, which can greatly affect the overhead of the protocol, compared with computing
f in the clear. The most common approach is to consider the function f as a circuit where input,
output, and internal values are from some algebraic structure and gates represent operations over
this structure. A typical choice of algebraic structure is the finite field F2 [78, 18, 109, 92], which
means that f computes over bits, addition is equivalent to XOR, and multiplication is equivalent to
AND. Another popular choice is the ring Zq [20, 56, 95, 61, 44] where addition and multiplication
are carried out over the integers modulo some large q. Some protocols also use a binary extension
field F2k (for a large k), where addition is equivalent to XOR but multiplication is binary polynomial
multiplication, which is particularly well-suited to computing certain cryptographic functions such as
AES [53, 57, 93].

Each of these have their strengths and weaknesses, for example F2 is best for bitwise computa-
tions such as comparison of two integers, symmetric encryptions and hash functions, while arithmetic
modulo q is suitable for arithmetic operations such as computing statistics or linear programming [49].
However, in an application it will often be useful to convert between different representations, depend-
ing on the requirements at various stages of the program. For example, this has been done successfully
in the ABY framework [58] and subsequent works [105], which convert between arithmetic and binary
sharings for applications such as private biometric matching and classification using support vector
machines, linear/logistic regression and neural networks. The downside of these approaches is that
they only offer security against a passive adversary, or, in the case of [105], can only achieve active
security in the restricted setting of three parties with an honest majority (that is, no collusions). MPC
protocols with active security against a dishonest majority tend to be much more complex, and also
typically only support arithmetic modulo q, where q is a large prime. This restriction makes it much

13



H2020-LEIT-ICT 731583 SODA Deliverable D1.3

more difficult to convert between Zq sharings and binary sharings, making the protocols less suitable
for applications where these conversions are needed.

1.1.2 The SPDZ2k Protocol

Recent work by SODA researchers [47] took a first step in overcoming the above hurdle, with the
SPDZ2k protocol (named after the SPDZ family of protocols [56, 54]) for actively secure, dishonest
majority MPC over Zq even when q is not a prime, for example q = 2k. This gives hope that we may
be able to exploit arithmetic in Z2k to improve the efficiency of applications.

One of the main advantages of working modulo 2k is that it corresponds naturally to 32/64-bit
computations done in standard CPUs, allowing for very simple and efficient implementations without
finite field arithmetic. Furthermore, the fact that 32 and 64-bit computation has been the norm for
many years means that there are many algorithms optimized for this domain. These cannot trivially
be leveraged in MPC applications working over Fp.

Despite these advantages, we note that our previous work [47] only described how to do additions
and multiplications securely over Z2k , which on its own is not enough to realize complex applications.
This is because a large number of applications require efficient sub-routines for operations such as
equality testing, comparison, and truncation, which do not give rise to efficient arithmetic circuits.
Subprotocols for these tasks are well-studied when the computation is over Fp [51, 111, 40], but
it is not immediately clear whether these techniques apply directly to the ring setting over Z2k . In
particular, many of the techniques rely on properties of fields, like the simple fact that division by 2
is possible (as long as the characteristic of the field is not 2). However, this does not work modulo 2k

since 2 is not invertible, so some workarounds are needed.

1.1.3 Contributions

In this work we present new primitives and applications for actively secure computation with a dishon-
est majority using arithmetic modulo 2k. We first describe efficient protocols for conversion between
binary and arithmetic sharings in Z2k , and then leverage these to design efficient protocols for equality
testing, comparison and truncation that work over the ring of integers modulo 2k. Finally, we show
how these protocols can be applied to solve problems in machine learning, namely, private classifica-
tion using decision trees and support vector machines (SVMs).

We introduce several optimizations and implement our protocols in the FRESCO framework [6],
along with the underlying SPDZ2k protocol of Cramer et al. [47]. We benchmark and compare our im-
plementation with SPDZ, the state-of-the-art MPC protocol in the dishonest majority setting, also im-
plemented in the FRESCO framework. Our implementation shows a speedup of 4–6x for SPDZ2k over
SPDZ for computing multiplication, equality and comparison. We also implemented the preprocess-
ing of SPDZ2k , which is independent of the function to be computed, on top of Bristol-SPDZ [127].
We show this implementation to be highly competitive with the OT-based MASCOT [95] protocol
in both WAN and LAN settings. Compared with the more recent Overdrive protocol [96] based on
homomorphic encryption, our preprocessing comes close to meeting Overdrive’s performance in a
LAN setting, but is several times slower in a WAN due to the high communication costs.

To demonstrate our new building blocks, we consider the application of oblivious evaluation of
decision trees and SVMs, and show that using our subprotocols for comparison, coupled with the
SPDZ2k protocol, is around 2–5.3x faster in the online execution phase.

30.09.2019 D1.3 Special Purpose MPC Protocols 14



H2020-LEIT-ICT 731583 SODA Deliverable D1.3

1.1.4 Overview of our Techniques

Both SPDZ, SPDZ2k , and in fact many contemporary MPC protocols are cast in the online/offline
setting. In this setting a “slow”, function independent, preprocessing phase is first carried out to con-
struct some raw material. When the parties know the specific function to compute, along with their
respective inputs, then this raw material is used in the online phase to complete the actual computation.
The raw material consists of random elements, and random triples for multiplications. During the on-
line phase the random elements can be used to obliviously give input and similarly the multiplication
triples can be used to realize multiplication gates. We embrace this model in our protocols, which
are typically based on random preprocessed triples, bits or random values, and we also show how
to generate this preprocessing data over the appropriate ring for our binary and arithmetic protocols
where this was not previously studied.

For our arithmetic-to-binary conversions, we start with the observation that an arithmetic SPDZ2k

sharing of x ∈ Z2k , denoted [x], can be locally converted into a sharing of x mod 2, but under a differ-
ent secret-sharing scheme, namely a SPDZ2k instance with k = 1. We therefore define this instance
with k = 1 to be our secret-shared representation of binary values. This also immediately gives us a
complete arithmetic-to-binary conversion, assuming we can first bit-decompose x into SPDZ2k shares
of its bits xi, which we turn to later. To convert the other way, from binary to arithmetic sharings,
we can take a random SPDZ2k -shared bit [r], convert r to a binary share, then open x⊕ r and use
this to adjust [r] into an arithmetic sharing of x, which can be done as a local computation. We can
also perform computations on binary-shared values similarly to operations on SPDZ2k sharings, using
multiplication triples designed for our k = 1 instance of SPDZ2k to implement AND gates.

To complete the picture, we need to be able to generate the necessary preprocessed random bits
over Z2k and random multiplication triples over Z2 (the case of triples over Z2k was shown in [47]).
Generating random bits modulo 2k is not as simple as applying standard techniques from the field
setting [54] since this relies on taking square roots modulo p, but square roots modulo a power of 2
have a more complex structure, so this cannot be directly applied. However, we show how to exploit
the nature of the secret-sharing scheme in SPDZ2k such that it is still possible to generate random bits
using one multiplication triple, as in SPDZ.

We also show that binary SPDZ2k triples, with k = 1, can be generated very efficiently by ex-
ploiting TinyOT-style protocols [109, 130] based on XOR-sharings. To do this, we give a conversion
protocol which takes a batch of TinyOT-like XOR sharings and converts them to binary SPDZ2k shar-
ings with almost no overhead. Since our conversion protocol guarantees that the new sharings will be
of the same value, this means creating the new type of triples costs just the same as in TinyOT. This
gives us a huge advantage over using native SPDZ2k triples, since TinyOT triples can be generated at
over 250 000 triples per second, more than 10x the throughput of our SPDZ2k implementation.

For our other key building blocks like secure comparison, equality and bit decomposition, we
adapt existing solutions over finite fields [40] to the ring setting. Since many of these protocols have
key sub-components consisting only of bit-wise operations, we can apply our conversion protocols to
optimize them. We thus obtain very fast online phases for secure comparison and equality, with an
online communication complexity of just O(k) bits for k-bit integers. In concrete terms, this gives
up to an 85-fold reduction compared with the online complexity of protocols used in SPDZ, which
require sending O(k) field elements per comparison or equality.

30.09.2019 D1.3 Special Purpose MPC Protocols 15



H2020-LEIT-ICT 731583 SODA Deliverable D1.3

1.1.5 Related Work

Many of our subprotocols’ optimizations rely on moving between computation over bits and over Z2k .
Several previous works have studied conversions between different types of secret-sharing represen-
tations for MPC, most notably the ABY framework [58], which has passively secure two-party pro-
tocols for converting between arithmetic, binary and Yao-based secret data types. Chameleon [121]
extended this to a setting with an external, non-colluding third party to assist in the computation,
and ABY 3 [105] extended this to a more general three-party honest majority setting, also with some
support for active security. On the theoretical side, share conversion between different secret-sharing
schemes was first studied by Cramer, Damgård and Ishai [48].

In the last few years there has been a lot of research in private machine learning applications using
secure computation. For our applications to decision tree and SVM evaluation, the most relevant are
the works by de Cock et al. [45], Demmler et al. [121] and Makri et al. [104]. For a more thorough
survey including other machine learning applications, we refer the reader to [106, 105].

On the side of MPC primitives like comparison, there has been some other work in the setting of
general, dishonest majority MPC over the ring Z2k [102]. Although their protocols are quite efficient
asymptotically, they unfortunately have quite large hidden constants and local computation, compared
to the state-of-the-art protocols working over fields [40], and in turn our protocols as well.

Even though SPDZ2k is the only MPC protocol we are aware of that works over the ring Z2k and
is actively secure against a dishonest majority, other authors have worked on MPC protocols over Z2k ,
but with less stringent security requirements. Of particular interest is Sharemind [27], as this scheme
also allows mixing boolean and arithmetic operations. However, security is only in the passive, 3-party
setting for an honest majority. Sharemind has also been extended to the active case [115]. Another
relevant work in this area is the compiler by Damgård et al. [55], which can transform a passively
secure protocol for t corruptions into an actively secure protocols for

√
t corruptions (meaning an

honest majority). Recently Araki et al. [11] presented a highly efficient stand-alone protocol for
passive security in the honest majority setting.

1.2 Preliminaries

1.2.1 Notation

Given a natural number M, we denote by ZM the set of integers x such that 0 ≤ x ≤ M− 1. We
abbreviate the congruence x ≡ y mod 2k as x ≡k y. We let x mod M denote the remainder of x when

divided by M, and we take this representative as an element of the set ZM. When we write c = a
?
< b,

we mean that c is 1 if a < b, and 0 otherwise.

1.2.2 Background on SPDZ2k Shares and Core Protocols

Our protocols build upon the secret-sharing scheme from SPDZ2k [47] based on additive secret-
sharing with information-theoretic MACs, and its subprotocols used for computing on shares. The
main idea behind this secret-sharing scheme is that, to perform a secure computation on additive
shares modulo 2k with active security, the parties will run a computation over a larger ring modulo
2k+s, where σ = s− log(s) is a statistical security parameter, but correctness is only guaranteed mod-
ulo 2k. The reason for this is that in a ring with many zero-divisors, traditional information-theoretic
MACs cannot protect the integrity of an entire ring element x′ ∈Z2k+s , however, they can offer integrity
on the lower-order k bits, namely x = x′ mod 2k.

30.09.2019 D1.3 Special Purpose MPC Protocols 16



H2020-LEIT-ICT 731583 SODA Deliverable D1.3

Given x∈Z2k , we denote by [x]2k the situation in which the parties have additive shares x1, . . . ,xn,m1, . . . ,mn ∈
Z2k+s and α1, . . . ,αn ∈ Z2s such that x≡k ∑ j x j and

(
∑ j α j

)
·
(
∑ j x j

)
≡k+s m j. If there is no chance of

ambiguity we use [x] to denote [x]2k when k is a large integer, e.g. k = 32 or 64.
We now summarize the core protocols for manipulating SPDZ2k shares, based on [47], which we

use.

Input value. [x]← Input(x,Pi), where x ∈ Z2k . Secret-shares and authenticates a private input x from
party Pi.

Linear operations. [z]← a[x] + [y] + b. Any linear function or addition by a constant can be per-
formed without interaction, resulting in a sharing of z = ax+ y+b mod 2k. The shares z j, t j ∈
Z2k+s of z and its MAC can be computes as follows. Let x j,m j ∈ Z2k+s be the shares of x and
the shares of its MAC for party Pj, and let y j,h j ∈ Z2k+s be the analogous for y. Party P1 sets
z1 = ax1 + y1 + b mod 2k+s and, for j ≥ 2, party Pj sets z j = ax j + y j mod 2k+s. Finally, all
parties Pj compute t j = am j +h j +bα j mod 2k+s.

Secret-shared multiplication. [z] ← [x] · [y]. Given a secret-shared multiplication triple, that is,
shares [a], [b], [c] for random a,b ∈ Z2k and c = a · b mod 2k, a sharing of the product of any
two sharings [x] and [y] can be obtained with 1 round of interaction.

Open. x′← Openk′([x],Pi). Opens the sharing [x] modulo 2k′ towards party Pi, where k′ ≤ k, so that
Pi learns only x′ := x mod 2k′ . The MAC on [x] is checked for authenticity, although some-
times when opening many values at once, the checks can be deferred and batched for greater
efficiency. If k′ is omitted, we assume k′ = k. Furthermore, if the argument Pi is omitted, we
assume the share is opened towards all parties.

Security Model

The security properties of the above protocols, and all the protocols in this work, can be formalized
using the arithmetic black box model, see for instance [102]. In this exposition we omit the formal
definitions and proofs in this model. In the full version we include proofs of basic correctness and
privacy properties

1.2.3 Preprocessing Material in SPDZ2k

The SPDZ2k protocol runs in two separate phases, the preprocessing phase, which is independent of
the parties’ inputs and can be done in advance, and the online phase. There are several different types
of random preprocessing data that are needed for different operations in the online phase. As men-
tioned above, we need a preprocessed multiplication triple for every secret-shared multiplication. For
each input by a party Pi, we also need a preprocessed random shared mask known to Pi. Additionally,
in some of our protocols we use random shared bits, which we show how to generate from a multipli-
cation triple. The Open protocol also uses a preprocessed random mask, however, when opening and
checking MACs on many values in a batch the same mask can be used for one check of all values, so
we do not count this cost in our evaluation.

Multiplication triples are the most performance-intensive type of preprocessing data to generate.
Random bits cost around the same as a triple; together these form the bottleneck of the preprocessing
phase. The masks used for inputs and opening are cheaper, requiring around 30x less communication
than triples when using the protocols from [47].

30.09.2019 D1.3 Special Purpose MPC Protocols 17



H2020-LEIT-ICT 731583 SODA Deliverable D1.3

1.3 Converting Between Binary and Arithmetic Sharings

1.3.1 Binary sharings

To represent a binary shared value, we simply use a standard mod 2k sharing with k = 1. That is,
the bit b and the MAC α · b are both additively shared modulo 2s+1, where the shares of b are only
guaranteed to be of the correct value modulo 2. We denote this by [b]2, in contrast with [b] for an
arithmetic sharing. Given two binary shared values [a]2 and [b]2, if the parties locally add the shares
then they obtain a valid sharing of the XOR of the two bits, a⊕b. Multiplication corresponds to AND,
and requires a binary shared triple [x]2, [y]2, [z]2 such that z≡ x ·y mod 2. We remark that, just as with
SPDZ2k triples, it is not necessary for the multiplicative relation to hold modulo 2s+1. So, even though
the parties hold additive shares of x, y and z modulo 2s+1, we may have z 6= x ·y mod 2s+1. In fact, this
is exploited by our protocol for efficiently converting XOR-shared binary triples into [·]2-sharings.

1.3.2 Efficient binary triple generation

The online phase of the SPDZ2k protocol works for any k, but unfortunately its offline phase (more
specifically, the sacrifice step in the triple generation protocol) requires k to be at least the security
parameter. To combine SPDZ2k with binary operations, we need another way of generating multi-
plication triples. One way could be to generate triples with a large k and then reduce them to get
[·]2 shares (as explained in Sec. 1.3.4). However, binary triples [x]2, [y]2, [z]2 can be generated much
more efficiently by exploiting TinyOT-style protocols [109, 129, 130], which generate triples with
XOR-shared MACs and shares, as we now show.

We will present a general technique for converting between two different types of sharings, which
both support linear computations over F2. Given this conversion protocol, we can convert triples
generated using TinyOT—or any other authenticated, F2-linear secret-sharing scheme—into a triple
based on our binary share representation.

Let 〈x〉 denote that the bit x is shared and authenticated using TinyOT, that is, each party Pi holds
a bit xi and a MAC M j

xi ∈ {0,1}s on xi, as well as a MAC key Ki
x j
∈ {0,1}s for Pj’s share x j, for all

j 6= i. Each party also has a global MAC key ∆i ∈ {0,1}s. The shares and MACs are set up such that
x =

⊕
i xi and M j

xi = K j
xi⊕xi∆ j, for all j 6= i. TinyOT-shared values can be XORed together locally and

multiplied by 0/1 constants in the usual manner. To convert a batch of TinyOT sharings 〈x1〉, . . . ,〈xm〉
into [·]2 sharings, we use the protocol in Fig. 1.1. The basic idea is that, for each input x, every party
will authenticate their XOR shares xi using SPDZ2k to create a new binary sharing and obtain [x]2.
Note that even though the original shares xi ∈ {0,1} are now summed over the integers modulo 2s+1

to form [x]2, they should still give a valid sharing of x mod 2, since the upper s bits do not matter.
To verify that everyone inputs the correct shares xi, we take a random F2-linear combination of all m
shares, masked by an additional random share, then open this using both the TinyOT and the SPDZ2k

sharings and check consistency. This check has soundness 1/2, so we repeat it σ times (using σ

additional random masked bits) to achieve a cheating probability of 2−σ .
We prove the following Lemma in the full paper [50].

Lemma 1. If the inputs 〈x1〉, . . . ,〈xm〉 form consistent TinyOT sharings of bits x1, . . . ,xm under uni-
formly random MAC keys, then the output sharings [x1]2, . . . , [xm]2 form consistent SPDZ2k sharings
with k = 1, except with probability at most 2−σ .

30.09.2019 D1.3 Special Purpose MPC Protocols 18



H2020-LEIT-ICT 731583 SODA Deliverable D1.3

Protocol Π〈x〉→[x]2

INPUT: TinyOT sharings 〈x1〉, . . . ,〈xm〉.
OUTPUT: Binary sharings [x1]2, . . . , [xm]2.

1. Sample s additional random TinyOT-shared bits 〈r1〉, . . . ,〈rσ 〉.

2. Each party Pi inputs the shares xi
1, . . . ,x

i
m,r

i
1, . . . ,r

i
σ with Input(·,Pi), and then the parties sum up the

shares to obtain (possibly incorrect) sharings [x1]2, . . . , [xm]2 and [r1]2, . . . , [rσ ]2.

3. Sample m · s random bits χi, j ←R {0,1}, for i = 1, . . . ,m and j = 1, . . . ,σ , using a coin-tossing
protocol.

4. For each j, let y j = Open2([r j]2⊕∑
m
i=1 χi, j · [xi]2) and y′j = ΠTinyOT.Open(〈r j〉2⊕∑

m
i=1 χi, j · 〈xi〉2).

5. Check that y j = y′j for all j. If not, abort.

6. Output the sharings [x1]2, . . . , [xm]2.

Figure 1.1: TinyOT share to binary SPDZ2k share conversion. ΠTinyOT.Open denotes the TinyOT share
opening protocol.

1.3.3 Arithmetic to Binary

Given a SPDZ2k sharing [x], the parties can obtain a correct binary sharing of the least significant bit
of x by simply truncating the upper k− 1 bits of the shares and MAC shares of [x]. This protocol is
given in Fig. 1.2, and it is easy to see that this gives a consistent sharing of x mod 2.

Protocol ΠA2B

INPUT: Arithmetic sharing [x].
OUTPUT: Binary sharing [y]2, where y = x mod 2.

1. Let xi,mi
x be Pi’s share and MAC share of [x].

2. Pi defines yi = xi mod 2s+1 and mi
y = mi

x mod 2s+1 to obtain shares of [y]2.

Figure 1.2: Arithmetic to binary SPDZ2k share conversion

1.3.4 Binary to Arithmetic

To convert a binary share [x]2 into a SPDZ2k sharing, we use the protocol in Fig. 1.3. This uses a
subprotocol ΠRandBit for generating a sharing [r]2k of a random bit r known to none of the parties,
which we show how to do in the full paper [50]. Given this, we can locally compute [r]2 using
arithmetic-to-binary conversion, and then open c = x+ r mod 2, which perfectly hides b. Finally,
using c and [r] we can locally compute an arithmetic sharing of x = c⊕ r.

1.4 Applications

A major application of our new conversion protocols is to perform more efficient bitwise operations
like secure comparison and truncation; in the full paper [50] we show how our protocols can be
applied to these building blocks. In this section, we demonstrate some concrete use-cases which take
advantage of these protocols.

30.09.2019 D1.3 Special Purpose MPC Protocols 19



H2020-LEIT-ICT 731583 SODA Deliverable D1.3

Protocol ΠB2A

INPUT: Binary sharing [x]2.
OUTPUT: Arithmetic sharing [x].

1. Let [r] = ΠRandBit().

2. Compute [r]2 = ΠA2B([r]).

3. Let c = Open2([x]2 +[r]2).

4. Output [x] = c+[r]−2 · c · [r].

Figure 1.3: Binary to arithmetic SPDZ2k share conversion

1.4.1 Decision Trees

We consider the machine-learning application of decision trees which is used for classification. A
decision tree is a function T : Rn→ Zq, where n is called the dimension of the feature space and q
is the amount of possible output categories. The input xxx = (x1, . . . ,xn) ∈ Rn to T is called the feature
vector. The function T is implemented as a binary tree with m internal nodes, where each internal

node v j for j ∈ [1,m] has associated a Boolean function f j : Rn→ {0,1} s.t. f j(xxx) = xι j

?
< t j where

ι j ∈ Zn is an index into the feature vector xxx and t j ∈ R is a threshold. Thus f j(xxx) evaluates to 1 if
and only if xι j ≤ t j, and 0 otherwise. Each leaf node of the tree is associated with an output value
z ∈ Zq. Now to evaluate T(xxx) = z, start at the root node and evaluate f1(xxx). If f1(xxx) = 0 then proceed
to evaluate the left child, if instead f1(xxx) = 1 then proceed to evaluate the right child. Continue in this
manner until reaching a leaf and return the value z of this leaf.

For simplicity, and since we want to hide the structure of the tree, we assume that it is complete.
We note that this is always possible as dummy nodes can be inserted as needed, which always evaluate
to 0.

We index nodes starting with 1 for the root node and then indexing by reading each layer top to
bottom and left to right; thus if v j is an internal node then v2 j is the left child of v j and v2 j+1 is the
right child. We say the depth is the amount of nodes in the path from the root to, and including, the
leaf; defining the root to be level 0. Thus the tree will have m = 2d−1−1 internal nodes and 2d leaves.
Note that the leaves will have index 2d to 2d+1.

Concretely we define T as a tuple of values (ttt,vvv,zzz), where ttt ∈ Rm, vvv ∈ Zm
n and zzz ∈ Z2d

q . That is,
ttt = (t1, . . . , tm) and vvv = (v1, . . . ,vm) are lists of cardinality m. We view as ordered such that the j’th
entry describe the j’th internal node in the tree. That is, each internal node v j will compute the value

f j = xv j

?
< t j. zzz = (z1, . . . ,v2d ) is an ordered list of integers, each representing an output of a leaf, thus

each leaf node v j (i.e. with j ∈]m,m+2d ]) will output the value f j = zzz j−2d .
Furthermore we consider the two-party setting where one party, called the client holds the feature

vector xxx = (x1, . . . ,xn) ∈ Rn. The other party, called the server holds the decision tree T. The parties
then wish to compute T(xxx) = z where the client learns z and the server learns nothing.

To evaluate a decision tree privately we work over a finite set of integers Z2k instead of the real
numbers. We convert a model based on real numbers by simply multiplying every decimal number
in the model by a set constant and then rounding to nearest integer. This of course causes loss in
accuracy, however, this rarely causes a problem and for real data the constant does not necessarily have
to be large to avoid losing classification accuracy [104]. We furthermore note that this conversion still
allows us to work with negative integers by considering the positive integers up to 2k as a value in two’s

30.09.2019 D1.3 Special Purpose MPC Protocols 20



H2020-LEIT-ICT 731583 SODA Deliverable D1.3

complement, thus representing the positive integers up to 2k−1− 1 and following these, the negative
integers from −2k−1 to −1. Because our computations will take place over a ring this representation
will ensure arithmetic operations act as expected (assuming no over- and underflow).

An actively secure protocol

Our protocol takes departure in the work by De Cock et al. [45] which presents a protocol for evalu-
ating decision trees based on secret sharing. We picked this protocol since it works in the arithmetic
black box setting, whereas other approaches such as the one by Wu et al. [132] or Joye and Sahali [90]
require homomorphic encryption. Still, the scheme by De Cock et al. is only secure in the semi-honest
setting. We show how to make it actively secure by adding a cheap extra step.

The overall idea of their scheme is to first pick each relevant value from the input feature vector
xxx for each node j, i.e. xv j . This is done by having the party holding the tree, P1, input an n-bit vector
for each of the m nodes. This bitvector will contain a single 1-bit in the position of the feature to use.
That is, we associate a bit c j,i ∈ {0,1} with each feature for each node (i.e. for all i ∈ [1,n], j ∈ [1,m])
s.t. ∑i∈[1,n] c j,i = 1 and c j,v j = 1. With these indicator bits we can arithmetically compute the attribute
to use in the j’th node as ∑i∈[1,n] c j,i · xi.

If the tree holder is actively corrupted then it will be able to input value c j,i s.t. ∑i∈[1,n] c j,i 6= 1. This
is a problem since this would allow a linear combination of (x1, . . . ,xn) to be used for the comparison
in each node of the tree. This would make it hard to write a simulation proof since the simulator
would not know xxx. To fix this issue we propose a solution that consists of enforcing that c j,i is a bit,
then open ∑i∈[1,n] c j,i for j ∈ [1,m] and check if this is always 1. It is easy to see that this check is
sufficient and clearly does not leak any information (as it is public knowledge that the opened value is
supposed to be 1). Furthermore, it is also easy to enforce that c j,i is a bit, even if the whole ring Z2k is
allowed as input: simply compute and open the value (1− c j,i) · c j,i and check if it is 0. Again it can
be argued that this is sufficient as c j,i equal to 0 or 1 are the only values for which (1− c j,i) · c j,i = 0
when working over Z2k .

Adding this check allows us to compute the correct attributes for each node with active security.
Via the attributes the output of the comparison in each node can be computed by the comparison
subprotocol; the output is a bit indicating whether to go left (0) or right (1) down the tree. To evaluate
the tree obliviously it is not possible to simply follow the correct path from the root to a leaf, as this
would leak too much. Thus, we must visit every node in the evaluation. This is done by computing
a bit for each leaf, which is the product of the output of the comparison for all the nodes on the path
to the root.1 There will be only one leaf for which this bit is 1. This is the leaf whose value is the
final output of the decision tree evaluation. Since the evaluator is oblivious to which leaf this is, we
multiply the bit of each leaf with the leaf’s value and sum this for all leaves. Because the bit for every
leaf, other than the correct one is 0, the output of this computation gives the correct result. This means
that the comparisons can be done once; for each internal node of the tree we can then compute if it is
part of the root-to-leaf path that is the result of the decision tree evaluation. Still, this requires O(d)
rounds of communication as all nodes on a given layer are dependent on a partial result of the nodes
higher up the tree.

We can compute the partial values of all nodes in the tree using a “reduction” approach by exploit-
ing the fact that multiplication is associative, i.e. that x1 ·x2 ·x3 ·x4 can be computed as (x1 ·x2) ·(x3 ·x4),
rather than ((x1 ·x2) ·x3) ·x4. Thus we can compute the product of d values with d−1 multiplications
and log(d−1) sequential rounds. For each node in every second layer from the root to the leaves, we

1The output of the comparison is negated for each node if it is a left child.

30.09.2019 D1.3 Special Purpose MPC Protocols 21



H2020-LEIT-ICT 731583 SODA Deliverable D1.3

compute the product of the output of its comparison with the output of the comparison of its parent
(negated if it is a left node). Next we use these results to compute a product for every four layers, by
multiplying the result of every node with the result of its grandparent (negated if its parent is a left
child). We continue until we have computed a product between every layer in the tree.

Computing these products dominates protocol round cost, since both selecting the feature for all
nodes, along with computing the comparison can be done in constant rounds (assuming we use the
constant round comparison protocol).

We note that De Cock et al. have implemented their protocol using boolean values, whereas we use
arithmetic values. Using boolean values and replacing multiplication and addition with component-
wise AND and XOR respectively would unfortunately not directly work on our fix to get active secu-
rity. This is because XOR’ing two 1’s would give 0, so an actively corrupted model holder would be
able to have the classification happen using XOR combinations of the different values of the inputting
party’s feature vector. Even more importantly, as the feature values are not binary but rather elements
from Z2k , using a binary protocol would require k multiplications (AND gates) to compute c j,i · xi for
i ∈ [m] and j ∈ [n], needed for each node in the tree. Even for relatively small values of k, like 32,
this would probably not be faster using a binary protocol. In particular, using the optimized TinyOT
protocol [129] this would be slower as the construction of a TinyOT triple is only about 12x faster
than a SPDZ2k triple.

1.4.2 Support Vector Machines (SVMs)

We consider the machine-learning application of Support Vector Machines (SVMs), which is a type
of supervised learning model used for classification. In its simple form it is used as a binary classifier,
but it can easily be extended to classify data into any finite set of categories. More specifically an
SVM is a function S : Rn → Zq, where n is the dimension of the feature space and q the amount
of categories (each represented by a non-negative integer). Similarly to the decision trees, the input
xxx = (x1, . . . ,xn) ∈ Rn to the function S is called the feature vector. The SVM S is implemented as
a matrix FFF ∈ Rq×n where the rows are known as the support vectors and a vector bbb = (b1, . . . ,vq) ∈
Rn which is called the bias. Conceptually, each support vector, along with a scalar from the bias
vector, can classify an input xxx into a specific category (or not). Specifically denoting the rows of FFF as
F1, . . . ,Fq, the value Fi · xxx+bi is computed to give a score of how likely xxx is to be in category i. Thus,
to find the most likely category of xxx we compute category(xxx) = argmaxi∈[1,q]Fi ·xxx+bi where the result
is an integer representing the corresponding category.

Like the case for decision trees we consider the two-party setting where one party, called the client
holds the feature vector xxx = (x1, . . . ,xn) ∈ Rn. The other party, called the server holds the SVM S .
The parties then wish to compute S (xxx) = z where the client learns z and the server learns nothing.
Similarly to the decision trees, we work over a finite set of integers Z2k , assuming two’s complement
representation to allow for integers in the range [2k−1,2k)

An actively secure protocol

Our protocol follows the equation for SVM classification, category(xxx) = argMaxi∈[1,q]Fi · xxx+bi, very
straight forward: In parallel compute the multiplication part of the inner products between xxx and Fi for
all i ∈ [1,q], as these are all independent. Next we note that addition does not require communication
and thus we sequentially have the parties sum up the component-wise product computed, in order to
compute the whole inner product. Next, for each inner product the parties add bi. These steps only
require constant rounds of communication and q · n multiplications. Finally computing the largest

30.09.2019 D1.3 Special Purpose MPC Protocols 22



H2020-LEIT-ICT 731583 SODA Deliverable D1.3

element of the q element list is done in O(log(q)) rounds as follows: In a recursive manner divide the
list of elements in halves until two or three elements remain. Compare these obliviously, and based
on this comparison construct a binary list where the index of the maximum of these two or three
elements is 1 and the is rest 0. This requires one or two comparisons and at most four multiplications.
The merging of the partial results then require O(q) comparisons and multiplications. Thus we end
with a total of O(q · log(q)) comparisons and multiplications for the arg-max computation.

1.5 Performance Evaluation

We now evaluate the concrete performance of our implementation of the online phase (Sec. 1.5.1) and
the offline phase (Sec. 1.5.2). In the full paper [50], we also describe several optimizations we used
and present further analyses.

For the online phase, we run micro-benchmarks for our basic primitives as well as end-to-end
evaluations of our two high-level applications on realistic datasets. We then compare our online im-
plementation of SPDZ2k in FRESCO with the baseline SPDZ implementation in FRESCO. The SPDZ
implementation in FRESCO is based on SPDZ-2 [54], which is the most recent and efficient online
protocol for SPDZ. In our evaluation of the offline phase, we evaluate the SPDZ2k triple generation
protocol across varying security parameters and network configurations. We then compare our offline
implementation in the Bristol-SPDZ C++ framework with the two most recent and efficient protocols
for SPDZ triple generation; MASCOT [95] and Overdrive [96]. Both of these are also implemented
in the Bristol-SPDZ framework, which ensures a more fair comparison. Our implementation forms
part of MP-SPDZ [107], a successor to Bristol-SPDZ.

Furthermore, we are unaware of any other practically competitive protocols considering a dishon-
est majority of malicious parties in the arithmetic setting and thus believe that comparing to SPDZ is
sufficient.

We chose to benchmark our protocols in the two-party setting, although all our constructions (ex-
cept the protocols for the specific setting of oblivious decision tree and SVM evaluation) generalize to
an arbitrary amount of parties. We did this for simplicity and since both SPDZ and SPDZ2k generalize
to more parties with similar overheads.

Setup. We run all experiments in the two-party setting. Each party executes on an m5d.xlarge
AWS EC2 instance running Ubuntu 16.04, with 4 vCPUs and 16GB memory. The instances are
hosted within the same region and connected over an up to 10 Gbps link. To investigate how different
network settings affect the performance of our protocols, we use tc to simulate bandwidth restrictions
and latency. For all experiments, we performed a minimum of 20 total runs and report the average
result. We discard the first run in order to ensure the JVM has warmed up.

1.5.1 Online Phase

For our online phase experiments, we consider two bit length settings. For the low bit length setting,
we use k = s = 32 (total bit length of 64) which supports 32-bit comparisons and equality operations
and affords 26 bit statistical security. We compare this setting to running SPDZ over a 64 bit field;
the larger field is necessary to ensure at least 26 bits of statistical security in the comparison protocol
used by SPDZ. Similarly, we compare the larger bit setting with k = 64, s = 64, total bit length 128,
and 57 bit statistical security to SPDZ over a 128 bit field with 57 bit statistical security.2

226, respectively 57 bits of security, are chosen for a fair comparison with SPDZ2k , as SPDZ2k has a logarithmic
deterioration of the statistical security, because of batched MAC checks.

30.09.2019 D1.3 Special Purpose MPC Protocols 23



H2020-LEIT-ICT 731583 SODA Deliverable D1.3

Table 1.1 shows throughput times (operations per second) for three non-linear operations: multi-
plication, equality, and comparison on a 1 Gbps network. We believe a 1 Gbps LAN to be a suitable
setting for the family of SPDZ2k and SPDZ protocols; the high latency of lower bandwidth WAN
networks would significantly limit performance due to the protocols’ non-constant round complex-
ity. Constant round protocols are more appropriate for such settings. Conversely, we do not report
numbers for a faster network since at 1 Gbps our implementation is not network-bound.

Table 1.1: Throughput in elements per second for the online phase of micro operations over 1 Gbps
network. The factor columns express the runtime improvement factor of SPDZ2k over SPDZ in

FRESCO.

k = 32 k = 64

SPDZ2k (σ = 26) SPDZ (σ = 26) Factor SPDZ2k (σ = 57) SPDZ (σ = 57) Factor

Multiplication 687041 141346 4.9x 522258 114071 4.6x
Equality 15334 3213 4.8x 6902 1282 5.4x

Comparison 9153 1769 5.2x 4514 756 6.0x

We obtain the throughput numbers from batched runs, i.e., parallel3 operations with batched com-
munication. We use batches of 100,000 parallel operations for multiplications and 5,000 for equality
and comparison.

For multiplications we see between a 4.6 and 4.9-fold improvement for the different bit-length
settings. This performance gain stems from a speed up in local computation as well as reduced
communication. Local computation improves since we do not need to perform modular reductions
and use a custom class for ring elements of specific bit-length (64 and 128 bit) which significantly
outperforms BigInteger arithmetic. The total amount of data sent is also reduced; for all protocols that
require communicating an element to the other parties, we only need to send the k least significant
bits, as opposed to an entire element for SPDZ. This alone cuts communication in half.

Comparison and equality (for k = 64) show an even higher increase in performance, with the
biggest improvement for comparison, six-fold for k = 64 and five-fold for k = 32.

Switching to boolean mode for the comparison protocol replaces a majority of the underlying
multiplications with bit-multiplications, which require sending only 2 bits per party, in contrast to two
whole field elements. This drastically reduces communication. The improvement in throughput is not
directly proportional to the reduction in communication since our implemention is not network-bound
at 1 Gbps. We nonetheless observe an improvement since reducing data sent also reduces the amount
of local serialization and data copying FRESCO does as part of networking.

Equality also benefits from switching to boolean mode, though the performance improvement is
less pronounced; we operate in arithmetic mode by default and must convert the boolean output of the
ΠEQZ protocol to an arithmetic sharing. This introduces an additional protocol round, but we avoid
this conversion for comparisons.

We note that for k = 32, multiplication yields a slightly higher relative improvement than equality.
This is due to the fact that the benefit of reduced communication for equality is not high enough to
outweigh the internal framework-related overhead of executing a more complex protocol.

The lower communication of multiplication and comparison directly affects the communication
and computation required for the more advanced applications of decision trees and SVMs, as can be
seen in Tab. 1.2 and 1.3.

3Parallel here does not imply running on multiple threads; it merely means that the operations are independent and
communication can thus be batched.

30.09.2019 D1.3 Special Purpose MPC Protocols 24



H2020-LEIT-ICT 731583 SODA Deliverable D1.3

Table 1.2: Online phase benchmarking of evaluation of decision trees over 1 Gbps network. The
factor columns express the runtime improvement factor of SPDZ2k over SPDZ in FRESCO. Times

are in milliseconds per sample.

k = 32, σ = 26 k = 64, σ = 57

Dataset Depth, Num. Features Batch Size SPDZ2k SPDZ Factor SPDZ2k SPDZ Factor

Hill Valley 3, 100 1 21 ms 24 ms 1.2x 26 ms 34 ms 1.3x
Spambase 6, 57 1 48 ms 104 ms 2.2x 56 ms 128 ms 2.3x
Diabetes 9, 8 1 80 ms 215 ms 2.7x 122 ms 443 ms 3.6x

Hill Valley 3, 100 5 6 ms 10 ms 1.7x 7 ms 15 ms 2.1x
Spambase 6, 57 5 14 ms 40 ms 2.9x 17 ms 68 ms 4.0x
Diabetes 9, 8 5 41 ms 185 ms 4.5x 78 ms 376 ms 4.8x

Table 1.3: Online phase benchmarking of SVM evaluation over 1 Gbps network. The factor columns
express the runtime improvement factor of SPDZ2k over SPDZ in FRESCO. Times are in

milliseconds per sample.

k = 32, σ = 26 k = 64, σ = 57

Dataset Num. Classes, Features Batch Size SPDZ2k SPDZ Factor SPDZ2k SPDZ Factor

CIFAR 10, 2048 1 82 ms 214 ms 2.6x 99 ms 255 ms 2.6x
MIT 67, 2048 1 379 ms 1318 ms 3.5x 499 ms 1582 ms 3.2x

ALOI 463, 128 1 242 ms 857 ms 3.5x 362 ms 1312 ms 3.6x

CIFAR 10, 2048 5 39 ms 168 ms 4.3x 57 ms 209 ms 3.7x
MIT 67, 2048 5 225 ms 1101 ms 4.9x 294 ms 1428 ms 4.9x

ALOI 463, 128 5 162 ms 741 ms 4.6x 244 ms 1220 ms 5.0x

30.09.2019 D1.3 Special Purpose MPC Protocols 25



H2020-LEIT-ICT 731583 SODA Deliverable D1.3

1.5.2 Offline Phase

Fig. 1.4 compares our implementation of triple generation to the two state-of-the-art preprocessing
protocols of the SPDZ family; MASCOT [95], and Overdrive [96]. All three implementations are part
of the MP-SPDZ framework [107]. We first note that SPDZ2k saturates the network for all number
threads we tested in the WAN setting, and for 2 and 4 threads on a 1 Gbps LAN. However, SPDZ2k

becomes computationally bounded in the case for one thread on the 1 Gbps LAN and for all number
of threads we tested in the 10 Gbps LAN setting. This is visible from the graphs by noting the
convergence of throughput of SPDZ2k in the WAN setting and at 2 threads in the 1 Gbps LAN.

For similar bit-lengths, the efficiency of SPDZ2k and MASCOT is almost the same. This is ex-
pected as our implementation is closely related to MASCOT. For smaller bit-lengths, i.e., k = 32,
our implementation is significantly more efficient since it requires far less communication. We note
that the MASCOT implementation is hard-coded for fields of 128 bits and thus we cannot compare
how it fares with a smaller field. Overdrive performs significantly better than SPDZ2k in the WAN
setting, but the difference shrinks in a LAN. This is not surprising as Overdrive uses significantly
less communication than MASCOT, and thus fares much better in a slower network than MASCOT,
and consequently SPDZ2k . SPDZ2k can nonetheless compete with Overdrive, given a fast enough
network; (Fig. 1.4c) shows that the low bit setting for SPDZ2k matches Overdrive performance in a
10 Gbps LAN.

We ran SPDZ2k and MASCOT in batches of 1024 triples, and Overdrive in low-gear mode [96],
the most efficient mode in the two-party setting. Increasing the thread count further did not signifi-
cantly improve the throughput of any of the protocols we benchmarked.

1 2 3 4

Number of threads

0

500

1000

1500

2000

2500

3000

SPDZ2k (k = 32, σ= 26) SPDZ2k (k = 64, σ = 57) Mascot (128 bit field)
Overdrive (k = 64 (128 bit field), σ = 57) Overdrive (k = 32 (64 bit field), σ = 40)

1 2 3 4

Number of threads

0
500

1000
1500
2000
2500
3000
3500

T
hr

ou
gh

pu
t

[p
er

se
co

nd
]

(a) WAN (50 Mbps, 100 ms la-
tency)

1 2 3 4

Number of threads

0
5000

10000
15000
20000
25000
30000
35000

T
hr

ou
gh

pu
t

[p
er

se
co

nd
]

(b) LAN (1 Gbps, 0.1 ms latency)

1 2 3 4

Number of threads

0
5000

10000
15000
20000
25000
30000
35000

T
hr

ou
gh

pu
t

[p
er

se
co

nd
]

(c) LAN (10 Gbps, 0.1 ms latency)

Figure 1.4: Triple generation throughput across different protocols and network settings.

The amount of preprocessed material needed for the operations/applications considered in this
work can be found in Table 1.4. The table includes count of the arithmetic and bit triples needed for
both SPDZ2k and SPDZ, along with the amount of random bits needed (which require an arithmetic
multiplication triple for both SPDZ2k and SPDZ). We note the timing column is only an estimate,
based on the time required for triple generation and bit triple generation. Thus the true time will be
slightly larger for both SPDZ2k and SPDZ, because of the usage of authentication and input masks.
However, these are in the order of a magnitude faster to construct compared to triples. Furthermore,
the amount needed is fewer than the number of triples required and so the true impact of constructing

30.09.2019 D1.3 Special Purpose MPC Protocols 26



H2020-LEIT-ICT 731583 SODA Deliverable D1.3

these will be minuscule. Most importantly though, the amount required by both SPDZ2k and SPDZ is
almost the same and so the effect on the relative difference between the two will be insignificant.

Table 1.4: Costs of the preprocessing for different operations/applications. Timings are estimates
based on triples/random bits needed and are based on a 4 threads execution on a LAN supporting up

to 10 Gbps. For SPDZ, Overdrive [96] is used. For bit triple generation the optimized TinyOT
protocol by Wang et al. [129] is used.

SPDZ2k , k = 32, σ = 26 SPDZ, k = 32, σ = 26 (64 bit field)
# triples # bit-triples # random bits time (ms) # triples # bit-triples # random bits time (ms)

Comparison 0 60 33 1.43 60 0 58 4.04
Equality 0 31 33 1.34 31 0 58 3.04

DTree (diabetes) 5460 15300 8415 571 20760 0 14790 1216
SVM (aloi) 63332 27720 15246 3055 91052 0 26796 4030

SPDZ2k , k = 64, σ = 57 SPDZ, k = 64, σ = 57 (128 bit field)
# triples # bit-triples # random bits time (ms) # triples # bit-triples # random bits time (ms)

Comparison 0 124 65 7.22 124 0 121 14.9
Equality 0 63 65 7.04 63 0 121 11.2

DTree (diabetes) 5460 31620 16575 2417 37080 0 30855 4124
SVM (aloi) 63332 57288 30030 10006 120620 0 55902 10714

1.5.3 Applications

In tables 1.2 and 1.3 we show online benchmarking results of Protocols ΠDecTree and ΠSVM from
Sec. 1.4. The tables show the online execution time of these protocols when obliviously classifying
data, both using SPDZ and SPDZ2k . For both decision tree and SVM evaluation, we measure evalua-
tion time for a single data point, and the amortized time of evaluating multiple points in batches of 5
(since a service will likely classify more than a single data point).

Decision Trees

Table 1.2 shows online times for oblivious evaluation of some binary data models by De Cock et
al. [45], based on datasets from the UCI repository4. The models are used to identify hills vs. valleys
on 2-D graphs (Hill Valley), diabetes in women of Pima Indian decent (Diabetes) and spam vs. non-
spam e-mail based on textual content (Spambase). We chose these models as they contain a large
variation in the amount of features.

We see a noticeable, relative improvement of SPDZ2k over SPDZ in all the models we bench-
marked, which further increases with the depth of the tree. As expected, batched evaluation yields
better throughput; the batched runs also result in a bigger performance improvement for SPDZ2k over
SPDZ. This shows that comparisons, which are needed for each node of the tree, become the bottle-
neck. This holds for both SPDZ and SPDZ2k . Still, the impact is much greater for SPDZ as a depth
increase from 3 to 9 results in a relative slowdown of up to 25x, whereas for SPDZ2k the slowdown
is at most 18x. We thus see how important an efficient realization of an operation like comparison
is for the real-world setting of decision trees. Finally, comparing k = 32 with k = 64 we see that the
smaller ring gives up to a 1.9x improvement for SPDZ2k and 2.0x for SPDZ, showing the importance
of flexibility in domain size.

4UC Irvine Machine Learning repository https://archive.ics.uci.edu/ml/datasets.html.

30.09.2019 D1.3 Special Purpose MPC Protocols 27

https://archive.ics.uci.edu/ml/datasets.html


H2020-LEIT-ICT 731583 SODA Deliverable D1.3

SVMs

Table 1.3 show oblivious evaluation of image classification models constructed by Makri et al. [104],
and a model with few features but many classes5. The models by Makri et al. are built on the
datasets CIFAR-10 [99] and MIT-67 [118] where Inception-v3 is used for feature extraction [126].
We chose these models to get a difference in number of classes and features. We see a large relative
improvement of SPDZ2k over SPDZ. This holds even for a the smallest amount of classes, and thus
smallest amount of comparisons as well. This indicates that the comparison is the main bottleneck in
the SVM execution in both systems, as this factor is close to the direct improvement of comparison in
SPDZ2k relative to SPDZ, as shown in Tables 1.1. It is interesting that this holds even for few classes
and many features, as shown by the Cifar row in the batched setting.

1.6 Conclusions

In this work we showed how to compute basic functionality like comparison, equality, bit decompo-
sition and truncation when working in the ring Z2k , thus overcoming issues such as zero-divisors and
lack of invertibility that arise in this setting.

We confirmed experimentally the conjecture from [47] that secure computation over the ring Z2k

provides many advantages in the online phase, with only slight increase in offline cost. In particular
we saw up to a 5-fold improvement in computation for various tasks, and up to a 85-fold reduction in
online communication costs for secure comparison, as compared to the field setting.

In the future, we plan to explore other applications of SPDZ2k , e.g., neural network evaluation,
where share conversions are known to help [105]. It also important to close the performance gap
between SPDZ2k pre-processing and Overdrive; SHE-based techniques present a promising venue.

5The model aloi at https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass.html#aloi.

30.09.2019 D1.3 Special Purpose MPC Protocols 28

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass.html#aloi


Chapter 2

Improved MPC Over Rings for Honest
Majority

This chapter is based on the paper Use your Brain! Arithmetic 3PC For Any Modulus with
Active Security [64], co-authored by SODA researchers, which is currently in submission.

2.1 Introduction

Secure Multiparty Computation (MPC) is an umbrella term for a broad range of cryptographic tech-
niques and protocols that enable a set of parties P1, . . . ,Pn to compute some function f of their private
inputs x1, . . . ,xn without revealing anything beyond the output f (x1, . . . ,xn) of the computation. Most
importantly, an actively misbehaving participant of the computation should not be able to bias the
outcome of the computation (except by choosing their input) or learn anything about the inputs of the
honest parties (except for what is leaked by the output itself). MPC started out as a purely theoretical
research field 80s, but has recently developed into a science on the brink of practical deployment. This
is witnessed by the constantly increasing number of real-world use cases, MPC framework implemen-
tations, and startups (see [12] for a survey).

The landscape of MPC protocols is broad and diverse, and protocols differ greatly depending on
many parameters such as the number of involved parties, the corruption threshold, the adversarial
model, and the network setting.

In this paper we focus on one of the most popular models for MPC, namely three-party com-
putation with an honest majority. This model has been used in different real-world applications of
MPC [30, 29, 25, 26, 7], often in the so-called client-server scenario where a possibly large number
of clients secret share their inputs to three computation servers who can then perform the desired
computation securely on their behalf [89] and return the result to the clients. A major advantage of
the honest majority setting is that one can obtain protocols which do not rely on computationally ex-
pensive cryptographic operations such as exponentiations, oblivious transfer, etc, but typically only
use light-weight arithmetic operations.

Existing implementations of three-party computation protocols for the honest-majority case fall
into two broad categories: VIFF [52] and its successors [123] only support arithmetic computations
over prime order fields. Sharemind’s protocol suite [27, 28] can be used to evaluate arithmetic cir-
cuits with arbitrary word sizes, but is only secure against passive adversaries that follow the protocol
faithfully. In practice this means that one has to either settle for rather weak security guarantees or
one has to develop applications specifically tailored to rather unnatural word sizes instead of using the

29



H2020-LEIT-ICT 731583 SODA Deliverable D1.3

common 32- and 64-bit word sizes that dominate real-world system architectures. In particular, this
means that a developer has to match the needs of the MPC framework it wants to use rather than the
MPC framework matching the needs of the developer.

The main barrier to constructing actively secure protocols for evaluating arithmetic circuits with
arbitrary word sizes lies in the fact that known approaches to achieving active security, like information
checking techniques [119], require prime order fields. Up until recently it has been an open question
to design protocols for arithmetic circuits with active security for arbitrary word sizes. In a recent
work Damgård et al. [55] addressed this question by presenting a protocol compiler that transforms
passively secure protocols into actively secure ones that can tolerate up to O(

√
n) corruptions and

only have a constant overhead in storage and computational work.

Our Contributions. In this paper we consider the class of protocols produced by compiler of
Damgård et al. [55], and we improve such protocols in several ways. The main idea behind Damgård
et al.’s compiler is to let the real parties “emulate” virtual parties that execute the desired computa-
tion on behalf of the real parties. The crucial point behind their compiler is that the virtual parties can
execute1 a passively secure protocol in a way that prevents any real party from actively misbehaving.
Every time that a virtual party Pi is supposed to send a message to another virtual party P j in the pas-
sively secure protocol, every real party that is emulating Pi computes the same message redundantly
and sends it to every real party which is emulating P j. Each real party emulating P j therefore receives
a set of messages and aborts in case the received messages are not all equal. Intuitively this approach
ensures active security as long as there is at least one honest party in the emulating set of every virtual
party, since any malicious party either follows the protocol (in which case we effectively only have
passive corruptions) or sends a message that disagrees with the message that is sent by at least one
honest party (in which case the honest receiving party and consequently all other parties abort the
protocol). This approach heavily relies on the fact that all protocol messages are sent redundantly,
thus incurring a multiplicative blow-up in the bandwidth overhead of the protocol.

Our first contribution is of theoretical nature: we present an improved compiler that significantly
reduces the number of redundant messages that need to be sent during a protocol execution. The
idea behind our approach is to elect one real party in each virtual party to be the “brain”, which
sends all messages on behalf of its virtual party to all real parties in the receiving virtual party. The
other real parties, the “pinkies”, still receive messages from the brains and thus can locally follow
the protocol execution. At the end of the protocol, right before the output of the computation is
released, we then let all parties perform a single check that guarantees that all messages which were
sent by the brains during the protocol are consistent with the messages all the pinkies would have
sent. This check can be performed very efficiently by only checking consistency of the hashes of the
protocol transcripts. It is clear that if any of the brains cheated during the protocol execution, then it
must have sent a message that is inconsistent with the view of at least one pinky, thus the protocol
would abort during the checking phase. On the downside our new compiler now imposes a stronger
security requirement on the protocol it starts with. Note that honest brains continue the protocol
execution up to the checking phase even if a malicious brain misbehaves, which means that we need
a protocol that does not leak any private information even if cheating during the computation phase
occurs. Thankfully, most passively secure secret sharing based protocols provide exactly the security
guarantees that we need. More concretely, these protocols follow a compute-then-open structure,
where the output of the computation is only revealed in the last round and any cheating during the

1Note that virtual parties do not physically exist. Whenever we say that “virtual parties execute a protocol”, we really
mean that the real parties simulate the virtual parties that execute the protocol.

30.09.2019 D1.3 Special Purpose MPC Protocols 30



H2020-LEIT-ICT 731583 SODA Deliverable D1.3

preceding computation rounds can only affect the correctness of the output, but not the privacy of
the inputs. Thus, by performing the consistency check described above at the end of the computation
phase and before the output phase, we can ensure that no information is leaked. The security property
sketched above has previously appeared in the literature under the name of weak privacy [73].

We formally present our new compiler and prove its security in Section 2.3. For the specific
three-party case, our compiler produces a protocol, which is roughly twice as efficient as the protocol
produced by the compiler of Damgård et al., since in the three party case each virtual party is emulated
by one pinky and one brain.

Our second contribution is an improved preprocessing protocol for generated secret-shared multi-
plication triples. Damgård et al. generate both triples modulo a prime and triples modulo a power of
2, followed by a check-and-sacrifice step. We replace this by a preprocessing phase which does not
perform any arithmetic in the larger prime field and solely uses computation modulo a slightly larger
power of 2, thus improving on efficiency. While the sacrifice step is not performed in a field anymore,
security follows using similar arguments as in the recent work on SPDZ over rings [47].

Finally we show that it is possible to completely avoid the preprocessing phase if one wishes to do
so. Recall that our underlying protocols are assumed to preserve privacy until the outputs are opened.
We exploit this security property by running the multiplication protocols optimistically and then, prior
to opening the outputs, perform a single combined check. The two protocols, with preprocessing
and with the postprocessing check, therefore offer different efficiency tradeoffs. The protocol with
preprocessing has a leaner online phase, whereas the protocol with postprocessing has a better overall
performances. Descriptions of our protocols are given in the full version of the paper [65].

In Section 2.4, we provide extensive performance benchmarks of our framework, both in the LAN
as well as different WAN settings. Our protocols have been integrated in two of the leading MPC
frameworks, namely the Sharemind MPC protocol suite and MP-SPDZ. As described in Section 2.4,
we achieve the most efficient implementation of a three-party computation protocol for arithmetic
circuits modulo 264 with active security.

Other Related Work. The SPDZ family of protocols [21, 56, 54] efficiently implements MPC with
active security in the dishonest majority setting. These protocols are split up into a slower, computa-
tionally secure offline phase in which correlated randomness in the form of so-called Beaver’s triples
is generated and a faster, information-theoretically secure online phase in which these triples are con-
sumed to compute the desired functionality. Active security in the online phase is achieved using
information theoretic message authentication codes (MACs), which until recently limited the SPDZ
approach to computation over fields. In a recent work of Cramer et al. [47], this limitation has been
lifted, allowing to perform computation modulo 2k (by defining the MACs modulo to be 2k+λ where
λ is the security parameter, thus introducing an overhead proportional to the security parameter). An
implementation (and optimizations) of [47] was presented in [50]. In addition [39] follows up [47]
with a two-party protocol that uses homomorphic encryption and efficient zero-knowledge proofs in
the precomputation phase.

Other recent works have considered active security in the three-party setting:
[69] uses correlated random number generation to achieve efficient preprocessing and replication

to achieve active security. The protocol was originally presented only for Boolean circuits, but it
was then later noticed that the approach generalizes to general rings [105]. They mention actively
secure protocols in this setting, but do not give detailed protocol descriptions and only implement
semi-honest versions of their protocols. For finite fields, [44] achieves active security by running
two copies of the computation, respectively with real and random inputs, and uses the latter to verify

30.09.2019 D1.3 Special Purpose MPC Protocols 31



H2020-LEIT-ICT 731583 SODA Deliverable D1.3

correctness (their approach can also be used for more than three parties).
A very different protocol for the same three party honest majority setting was presented in [42].

They combine two linear secret sharing schemes, one between two and other between three parties
where the former is used to share a component of the latter sharing. This allows them to create a circuit
dependent precomputation phase where all the two party sharings of random values are precomputed
based on the circuit structure. The online phase focuses on computing modifiers to turn the random
precomputed sharings into the desired values. Moreover, novel techniques for honest-majority MPC
over rings have very recently been deployed in [3]. It is however still unclear whether this can lead to
protocols which are efficient in practice.

2.2 Auxiliary Ideal Functionalities

We will make use of the following basic auxiliary ideal functionalities in this paper: The broadcast
with individual abort functionality Fbcast (Figure 2.1) allows a sender S to send a value v to a set of
parties P. The functionality guarantees that either a party aborts or it agrees on a consistent value with
the other parties. Such a functionality is weaker than detectable broadcast [67], which requires that
either all players agree on the same value or that all players unanimously abort. The functionality can
easily be instantiated by letting the sender S send v to all parties in P. Every party in P echoes the
received value to all other parties in P. Parties that receive consistent values output that value, parties
that receive inconsistent values abort.

Functionality Fbcast

The functionality runs with sender S, who has input v, parties P1, . . . , Pn, and adversary A .

1. S sends (v,P) to Fbcast, where v ∈ {0,1}∗ and P ⊂ {P1 . . .Pn}.

2. If either S or a party from P is corrupt, then A receives v and can decide which parties
from P abort and which receive the output by sending a |P| long bit-vector b to the
ideal functionality. For Pi ∈ P:

(a) If bi = 1, then Fbcast sends v to Pi.

(b) If bi = 0, then Fbcast sends ⊥ to Pi.

Figure 2.1: Broadcast functionality

The message checking functionality Fcheck (Figure 2.2) allows a receiver, who holds a vector
of messages, to check whether all other parties P1, . . . ,Pn hold the same vector of messages. The
functionality can be instantiated by letting each party Pi sends its input to R. However, in this case
the communication overhead would be On ` messages, where ` is the number of messages in a vector.
Assuming the existence of collision-resistant hash functions, one can obtain a more communication
efficient solution by simply letting all parties hash their message vectors into small digests before
sending them to R. The communication overhead of such a solution would be On λ bits if we assume
that the output length of the hash function is Oλ .

30.09.2019 D1.3 Special Purpose MPC Protocols 32



H2020-LEIT-ICT 731583 SODA Deliverable D1.3

Functionality Fcheck

The functionality runs with receiver R, parties P1, . . . , Pn, and adversary A . Party Pi ∈
{P1, . . . ,Pn} has input

(
m(1,i), . . . ,m(`,i)

)
and receiver R has input (m1, . . . ,m`).

1. All parties send their inputs to the ideal functionality.

2. A can decide whether to continue or to abort.

(a) If A continues, then Fcheck checks whether all message vectors are the identical.
It outputs same if this is the case, and different otherwise, to the receiver R (in
the latter case, the functionality outputs the inputs of all honest parties to A ).

(b) If A aborts, then Fcheck sends ⊥ to all parties.

Figure 2.2: Message checking functionality

2.3 Extension of the Compiler by Damgård et al.

The compiler COMPold by Damgård et al. [55] takes an n-party passively
(
t2 + t

)
-secure protocol Π

and transforms it into a protocol COMPold (Π) that is secure with abort against t active corruptions2.
For example, for t = 1, the compiler can transform a passively two-secure three-party protocol into
a protocol that is secure against one active corruption. The high-level idea of the compiler is to let
virtual parties execute the passively secure protocol on behalf of the real parties. Each virtual party Pi

is simulated by t+1 real parties Pi, . . . ,Pi+t in a way that prevents an active adversary, who controls at
most t real parties, from actively corrupting any of the virtual parties. In the following we will write
P j ∈ Pi to denote that real party P j is simulating virtual party Pi.

The workflow of their compiler can be split into two phases. In the first phase, for each virtual
party Pi, all real parties P j ∈ Pi agree on a common input and randomness that will be used by
Pi during the execution of the passively secure protocol Π. Having the same input and the same
randomness, every P j ∈ Pi will be able to redundantly compute the exact same messages that Pi is
supposed to send during the execution of Π. In the second phase, the virtual parties run Π to compute
the desired functionality from the inputs and randomness that the virtual parties have agreed upon.
Whenever Pi is supposed to send a message to P j according to Π, every real party simulating Pi will
send a separate message to every real party simulating P j. Each real party verifies that it receives the
same message from all sending real parties and aborts if this is not the case.

Intuitively, the resulting protocol is secure against t active corruptions, since an adversary cannot
misbehave on behalf of a virtual party it is simulating, and at the same time be consistent with at least
one other honest real party that simulates the same virtual party.

From an efficiency point of view, every message from one Pi to some other P j is sent redundantly
from t +1 to t +1 real parties. That is, if the passively secure protocol Π sends ` messages during a
protocol execution, then COMPold (Π) will send roughly O(` · t2) many messages.

2The authors also show how to achieve active security with guaranteed output delivery, but here we only focus on the
case of security with abort.

30.09.2019 D1.3 Special Purpose MPC Protocols 33



H2020-LEIT-ICT 731583 SODA Deliverable D1.3

2.3.1 A New Compiler for Protocols with Weak Privacy

We present a new compiler COMPnew, which makes slightly stronger assumptions about the starting
protocol Π, but compiles it into an actively secure protocol in a more communication efficient man-
ner. COMPnew takes as input a

(
t2 + t

)
-weakly private protocol Π and outputs a compiled protocol

COMPnew (Π) that is secure against t active corruptions. If Π sends ` messages in total, then our
compiled protocol will only send O(` · t + t2) messages.

P1

P2 P3

P2

P3
store m

P1
send m

P3

P1 P2

m
m

Figure 2.3: An illustration of our simulation strategy for the case of three parties with one active
corruption. Dashed circles represent virtual parties. Solid circles inside the dashed circles represent
the real parties that simulate the given virtual party. The brains of each virtual party are highlighted
in gray. The figure illustrates the process of virtual party P2 sending a message to virtual party P3.
The black arrows indicate that P1, the brain of P2, sends one message to P2 and one to P1, which is
omitted in reality, since it is sending a message to itself. P3 stores this message in its transcript.

Our new compiler follows the approach of COMPold. However, instead of verifying the validity of
every single message between virtual parties as soon as it is sent, we will let the real parties simulate
the virtual parties in a more optimistic and communication efficient fashion, where the correctness of
all communicated messages is only verified once at the end of the computation phase, right before the
opening phase of Π. Pushing the whole verification to the end of the computation phase allows us to
reduce the total number or redundant messages that are sent. This new simulation strategy crucially
relies on the weak active privacy of Π, since we are now allowing the adversary to misbehave up to
the opening phase without aborting the protocol execution.

The first phase of COMPnew, where all parties agree on their inputs and random tapes, is identical
to that of COMPold and is thus equally efficient. In the second phase, our new simulation approach
works by selecting one arbitrary real party Pi in each virtual party P j to be the brain B j := Pi of
that virtual party. The brains will act on behalf of their corresponding virtual parties in an optimistic
fashion and execute the computation phase of Π up to the opening phase. All other real parties,
the pinkies, will receive the messages that their corresponding virtual parties should receive, which
enables them to follow the protocol locally. However, the pinkies will not send any messages during
the computation phase. They will only become actively involved in the opening phase to ensure that
all brains behaved honestly during the computation phase. Once correctness is ensured, all parties will
jointly perform the opening phase of Π. During the computation phase of Π, whenever virtual party

30.09.2019 D1.3 Special Purpose MPC Protocols 34



H2020-LEIT-ICT 731583 SODA Deliverable D1.3

Pi is supposed to send a message to virtual party P j, we let Bi send one message to each real party in
P j. The receiving real parties do not perform any checks at this moment and just store the message.
B j will optimistically continue the protocol execution on behalf of P j according to Π and the received
message. This simulation strategy is illustrated in Figure 2.3.

At the end of the computation phase, all real parties jointly make sure that for each pair (Pi,P j),
the sending virtual party Pi always behaved honestly towards the receiving virtual party P j. This is
accomplished by using a message checking protocol (that implements Fcheck). If any of these checks
output different, then the protocol execution is aborted.

In the opening phase, after passing the previous check, every virtual party is supposed to send its
last opening message to all other virtual parties. For each pair (Pi,P j), all real parties in Pi send the
last message to all real parties in P j. Every receiving party checks that all t +1 received messages are
consistent and aborts if this is not the case.

In our formal description, let f (x1, . . . ,xn) be the n-party functionality that we want to compute.
For the sake of simplicity and without loss of generality, we assume that all parties learn the output
of the computation. Let Pi be the virtual party that is simulated by real parties Pi, . . . ,Pi+t . Let Vi be
the set of virtual parties in whose simulation Pi participates. Let f ′ be a related n-party functionality
that takes as input

(
xi

1, . . . ,x
i
n
)

from every Pi and outputs f (∑n
i=1 xi

1, . . . ,∑
n
i=1 xi

n). That is, every party
inputs one secret share of every original input. The functionality f ′ reconstructs the original inputs for
f from the secret shares and then evaluates f on those inputs. Let Π f ′ be a passively

(
t2 + t

)
-secure

protocol with robust privacy that securely implements F f ′ . The formal description of our compiler is
given in Figure 2.4. Throughout our description we assume that honest parties consider message that
they do not receive as malicious and act accordingly.

Theorem 1. Let n ≥ 3. Assume Π f ′ implements n-party functionality F f ′ with
(
t2 + t

)
-weak pri-

vacy. Then, COMPnew

(
Π f ′
)

implements functionality F f with active security under individual abort
against t corruptions. If Π f ′ has a total bandwidth cost of ` messages, then COMPnew

(
Π f ′
)

has a
total bandwidth cost of O(` · t + t2) messages.

Remark. Similar to Damgård et al. [55], we prove our result for the case of active security with
individual abort, where some honest parties may terminate, while some may not. As in their work,
our result easily extends to unanimous abort with one additional round of secure broadcast.

2.4 Implementation and Evaluation

To help adoption and accessibility of our protocols, we implemented them using Sharemind [24] and
the MP-SPDZ framework [107]. We provide extensive benchmarks in both LAN and WAN settings for
both implementations as well as a theoretical analysis of the asymptotic communication. Throughout
this section, we use a statistical security parameter λ = 40.

2.4.1 Communication

Table 2.1 shows the communication complexity per multiplication in Z264 with the various protocols
for statistical security parameter λ = 40. While the numbers are obtained from running the protocols
in batches of at least one million with rounding, they match the asymptotic cost one would expect
from a manual analysis. For comparison, we have added the figures reported in a recent concurrent
work by Chaudhari et al. [42] (averaged over the parties because their protocol is asymmetric).

30.09.2019 D1.3 Special Purpose MPC Protocols 35



H2020-LEIT-ICT 731583 SODA Deliverable D1.3

COMPnew

(
Π f ′
)

Inputs: Each party Pi has input xi.

1. Input sharing:

(a) Each Pi secret shares its input xi = x1
i + · · ·+ xi

n.

(b) For 1≤ j ≤ n, each Pi sends
(

x j
i ,P j

)
to the broadcast functionality Fbcast.

(c) Each Pi receives z j :=
(

x j
1, . . . ,x

j
n

)
for each P j ∈Vi from the broadcast function-

ality and aborts if any of the shares equals ⊥.

2. Randomness: Each brain Bi chooses a uniformly random string ri and sends (ri,Pi)
to Fbcast. The receiving real parties abort if they receive ⊥.

3. Computation phase: All virtual parties jointly execute the computation phase of Π f ′ ,
where each Pi uses input z j and random tape ri, as follows:

• Whenever Pi is supposed to send message m to P j, the brain Bi sends m to all
real players in P j.

• Whenever P j receives message m, all pinkies store the message and only B j

continues the protocol according to Π f ′ . The pinkies locally follow the protocol
and compute the message that they would send.

4. Check: At the end of the computation phase, all parties, brains and pinkies, jointly
check that the current transcript is correct. For each pair (Pi,P j), for each party Pk ∈
P j, we invoke Fcheck, where Pk acts as the receiver and Pi act as the remaining parties.
The input of Pk is the list of messages it received from Pi and the input of all parties
from Pi is the list of messages that they would have sent. If any invocation outputs
different, then the protocol execution is aborted.

5. Opening phase:

(a) For each pair (Pi,P j), all real parties in Pi send the last message of Π f ′ to all
real parties in P j.

(b) Every real party in P j checks that all received messages are equal. If they are it
obtains the output of the computation and otherwise it aborts.

Figure 2.4: Formal description of our compiler.

One optimistic multiplication in Z2m requires sending m bits, and using Beaver multiplication in
the data-dependent phase requires opening two masked values, thus sending 2m bits. A CDE+18-
style sacrifice [47] requires two optimistic multplications and one opening in Z2m+λ , while ABF+17
[10] asymptotically requires three optimistic multiplications and two classic sacrifices that require two

30.09.2019 D1.3 Special Purpose MPC Protocols 36



H2020-LEIT-ICT 731583 SODA Deliverable D1.3

Preprocessing Data-dep. Total

DOS18 preprocessing (single) 992 128 1120
DOS18 preprocessing (batch) 464 128 592
ABF+17 preprocessing 448 128 576
CDE+18 preprocessing 312 128 440
Postprocessing - 312 312
Semi-honest - 64 64

Malicious ASTRA [42] 448 85 553

Table 2.1: Communication per party and Z264 multiplication (bits)

openings each.3 This comes down to 7m bits. Finally, DOS18 preprocessing [55] with SingleVerify
requires two optimistic multiplications in Zp and two openings in Zp as well as sending two m+λ -
bit values for sharing over the integers, totalling in 2(m+ λ ) + 3log p bits. It roughly holds that
log p > 7+2m+3λ , so for our choice of parameters log p > 255.4 The slight difference to the figure
in the table comes from rounding up to multiples of eight.

2.4.2 Benchmarks

We have run our implementations in SIMD fashion, that is, combining the communication of a varying
number of multiplications in as few network messages as possible. It is of little surprise that up to a
certain number the throughput increases.

Figure 2.5 shows our benchmarks for various numbers of parallel multiplications in a LAN, that is
AWS c5.9xlarge instances in the same region. This type features 36 virtual CPUs, 72 GiB of RAM,
and 10 Gbit/s network network connection.

All benchmarks in this section are averages over ten executions. The figure for cut-and-choose is
limited to 1048576 because the analysis by Araki et al. [10] mandates batches of at least this size.
The plot shows that all malicious protocols perform similarly except the [55] protocol, and that the
postprocessing protocol is slightly ahead as one would expect.

Figure 2.6 shows our benchmarks for various numbers of parallel multplications in a continental
WAN, that is one AWS c5.9xlarge instance in each of Frankfurt, London, and Paris. The results
mirror the results in the LAN setting except for the fact that 220 parallel multiplications perform better
than 215 for all protocols. This is most likely because of the increased network delay of up to 12 ms.

Finally, 2.7 shows our benchmarks for a global WAN, that is one AWS c5.9xlarge instance in
each of Frankfurt, Northern California, and Tokyo. The largest network latency we observed is 236
ms in this setting.

3Because of cut-and-choose we cannot use the trick used for DOS18-style sacrificing.
4According to Damgård et al. [55], p > 100 · 22m+2λ , but a quick recalculation of 24 ·B22λ with B = 2m+λ+1 shows

that it should be 3s instead of 2λ in the inequality for p.

30.09.2019 D1.3 Special Purpose MPC Protocols 37



H2020-LEIT-ICT 731583 SODA Deliverable D1.3

100 101 102 103 104 105 106

103

104

105

106

107

# Multiplications

M
ul

tip
lic

at
io

ns
/s

Semi-honest MP-SPDZ
DOS18 (single) MP-SPDZ
CDE+18-style MP-SPDZ
ABF+17-style MP-SPDZ
Postprocessing MP-SPDZ
Semi-honest Sharemind
DOS18 (batch) Sharemind
Postprocessing Sharemind

Figure 2.5: Throughput in LAN

100 101 102 103 104 105 106

101

103

105

107

# Multiplications

M
ul

tip
lic

at
io

ns
/s

Semi-honest MP-SPDZ
DOS18 (single) MP-SPDZ
CDE+18-style MP-SPDZ
ABF+17-style MP-SPDZ
Postprocessing MP-SPDZ
DOS18 (batch) Sharemind
Postprocessing Sharemind

Figure 2.6: Throughput in continental WAN

100 101 102 103 104 105 106

100

102

104

106

# Multiplications

M
ul

tip
lic

at
io

ns
/s

Semi-honest MP-SPDZ
DOS18 (single) MP-SPDZ
CDE+18-style MP-SPDZ
ABF+17-style MP-SPDZ
Postprocessing MP-SPDZ
DOS18 (batch) Sharemind
Postprocessing Sharemind

Figure 2.7: Throughput in global WAN

30.09.2019 D1.3 Special Purpose MPC Protocols 38



Chapter 3

Secure Evaluation of Quantized Neural
Networks

This chapter is based on the paper Secure Evaluation of Quantized Neural Networks [15],
co-authored by SODA researchers, presented at two workshops on Privacy-Preserving
Machine Learning, co-located with Crypto 2019 and CCS 2019.

3.1 Introduction

Machine Learning (ML) models are becoming more relevant in our day-to-day lives due to their
ability to perform predictions on several types of data. Neural Networks (NNs), and in particular
Convolutional Neural Networks (CNNs), have emerged as a possible solution for many real-life prob-
lems such as facial recognition [100], image and video analysis for self-driving cars [31] and even for
playing boardgames (most readers probably know of AlphaGo [125] which in 2016 beat one of the
best Go players currently alive, Lee Sedol [131]). CNNs have also found applications within areas
of medicine. [66], For example, demonstrates that CNNs are as effective as experts at detecting skin
cancers from images.

In many applications the data on which the prediction is performed is sensitive and ideally no
information should be disclosed to the model owner. Conversely, the model owner may have invested
a significant amount of time and effort into developing his model and so might not like to disclose
his model to the input owner. MPC arises as a natural solution to this dilemma. Indeed, the security
guarantees that MPC provide state exactly that participants learn nothing except their respective inputs
and the output.

While secure inference has been an active research topic within the last couple of years (see
e.g., [106, 105, 91, 103]), previous solutions often fall short of the goal when it comes to developing
solutions that are both efficient and practically usable. Evaluating a Neural Network is quite expensive
in terms of the operations. For example, evaluating a single convolutional layer with a di×h f ×w f ×
d f filter and hi×wi×di input takes in the order of h f hiw f wid f di operations; and if both the filter and
input are represented in floating point, this quickly becomes prohibitive to do securely (e.g., in MPC)
for even small inputs and filters. Moreover, each linear layer (such as a convolution) is followed by a
non-linear one, such as ReLU(x) = max(0,x), which is expensive too when computed securely.

For these reasons, previous works resort to modifying the NN models in some way in order to
obtain a representation that is “MPC friendly” (or GC/FHE friendly). However, such changes carry
with them several serious flaws that hurt the validity of these works and in particular their practical

39



H2020-LEIT-ICT 731583 SODA Deliverable D1.3

applicability (especially among non-experts). The central theme of our work is addressing these
problems and so we discuss them in more detail here. We focus our discussion on secure inference
using MPC, however all our arguments apply to Garbled Circuits or Fully-Homomorphic Encryption
based solutions as well.

Floating vs. fixed point numbers. MPC protocols support simple arithmetic (or boolean) opera-
tions such as addition and multiplication over the integers (or XOR and AND over Z2). However,
they lack efficient support for operating on floating point numbers and so performing floating point
arithmetic is typically done by operating on the level of bits (i.e., by evaluating a circuit that per-
forms the operation). Using fixed point numbers instead can speed up the computation quite a bit and
so representing a model’s parameters as fixed point numbers is typically what is done in the Secure
Inference literature.

The question is: what effect does this switch in representation have on the model? Most networks
perform well on very simple problems such as MNIST and CIFAR10, which are the benchmarks
that is usually run, and it is not unreasonable to expect the models to still perform well even after a
change in representation. Moreover, the experimental results we see in previous work (e.g., [106]) that
evaluates such models show that the effect of going from floating to fixed point numbers is essentially
negligible.

However, these results only show that the modifications work for those specific models; in par-
ticular, it is not at all clear that these modifications have similar benign effects on networks that are
much larger and much more complex. In fact, the research area of quantization (which we will return
to in the next section) deal with this exact question.

Changing activation functions. Closely related to the discussion in the previous paragraphs is the
question about the effect of changing the activation functions of a model. Naturally, the same issues
exist here: it is not clear if a result in one model generalizes to another. This argument applies to
works that approximate activation functions [106, 91], as well works that replace activation functions
by “similar” functions (e.g., using max pooling instead of average pooling, or square instead of ReLU).

Existing frameworks. Finally, altering models as described above is very often particular to a spe-
cific secure protocol and so it is rarely clear how to train and evaluate a model that will perform well
when run securely. This creates an unnecessary entanglement between obtaining the input for the
secure protocol and the secure protocol itself, which is an obstacle for practical deployment. For ex-
ample, this entanglement creates an unreasonable barrier to non-experts (on the secure protocol) who
wish to run the protocol in practice. It should ideally be the case that one can train a model using
e.g., Tensorflow [1] or PyTorch [113] (or some other popular training framework) and then use the
model so obtained directly as input, without having to worry about a loss in accuracy or some other
incompatibility.

3.1.1 Related work

We provide here a brief overview of prior work on secure inference with an emphasis on modifications
that are applied to the models they evaluate.

Early work on evaluating NNs securely can be traced back at least to the work by Barni et al. [17]
and Orlandi et al. [112]. Both works use Homomorphic Encryption to evaluate the networks, and the
implementation in [112] use a fixed-point approximation. In fact, all prior work that uses some variant

30.09.2019 D1.3 Special Purpose MPC Protocols 40



H2020-LEIT-ICT 731583 SODA Deliverable D1.3

of Homomorphic Encryption that we are aware of rely on a conversion to fixed-point. CryptoNets
by Gilad-Bachrach et al. [76] chooses to approximate the max pooling function, and uses a square
activation function (i.e., f (x) = x2) that was observed to behave badly during training on which the
authors note that it may not be suitable for training larger networks. The authors of [41] recognize this
issue and instead approximate the ReLU activation using polynomials. This too is problematic unless
batch normalization [84] is used.

Several works exist that make use of the protocol switching idea of ABY [58]. MiniONN [103]
provides a framework for transforming a previously trained model into one that can be run with
ABY. While this is step in the right direction, in terms of usability, it still falls victim to the issue
of having to modify the model (and thus requiring users to be aware of the transformation when the
model is trained). Later, the authors of [121] present another solution that also uses ABY, but which
introduces a third party in order to compute Oblivious Transfers more efficiently. Their protocol
enjoys a 3.5x speedup over [103]. Lastly, ABY3 [105] (essentially ABY for 3 parties) also provide
micro benchmarks for operations common in NNs.

SecureML [106] and SecureNN [128] both use fixed point arithmetic in MPC and consider train-
ing as well as inference. SecureML introduces an optimized way of performing the truncation nec-
essary when performing a fixed-point multiplication; however, it only works for a small amount of
multiplications (and the number of multiplications one can perform using this technique is not clear).

DeepSecure [122] take a Garbled-Circuit-only approach and implement a library for various com-
mon operations that are relevant for NN evaluation. Recently, and concurrent to our work, Riazi
et al. [120] presented XONN, which is an efficient way of evaluating NNs using garbled circuits.
Their results can be attributed to the fact that they use binarized models [83]—a form of quantized
models—which all weights in a model into values −1/1.

In another related work by SODA resesarchers, Abspoel et al. [2] designed a novel small-range
comparison protocol and applied this to efficient, secure evaluation of binarized NNs, similarly to
XONN.

3.1.2 Quantization in prior work

With the exception of DeepSecure [122] and XONN [120], all works listed in the previous section
employ a naive floating point to fixed point transformation.

The XONN work deserves a special mention here as they rely on a technique from the Machine
Learning literature. In particular, they make the same observation as us that some of the challenges
that is faced when constructing protocols for secure inference have in fact already been considered in
the ML literature.

3.2 Quantization

The goal of model quantization is firstly to reduce the size of the model, and secondly to reduce
the computational load of evaluating the model (e.g., by requiring only integer operations and binary
shifts). Reducing the model size and complexity is an attractive goal if one wants to use a model on a
device with little computational power, such as smartphones, IOT or embedded devices.

We remark that quantization is only applied to the forward pass—or inference step—and not
during training, and so our approach only applies here. However, ML researches are slowly looking at
performing model training with a quantization flavor to it, so investigating secure training of quantized
models is a promising direction for future work.

30.09.2019 D1.3 Special Purpose MPC Protocols 41



H2020-LEIT-ICT 731583 SODA Deliverable D1.3

While the quantization scheme we focus on in this work uses many similar techniques to those
we discussed in the introduction (namely, fixed point arithmetic), we stress that the techniques we use
here were not developed with the security protocol in mind, and moreover, these were developed by a
team of ML researchers with the explicit aim of preserving the accuracy of the models. The ultimate
value of this is that, even if their methods can still be considered heuristics, these are backed up by
an extensive body of research made by competent researchers in the area. Moreover, given that these
tools find applications beyond secure inference (namely, what they were designed for initially), their
validity is likely to be assessed more thoroughly by a broader community.

3.2.1 TFLite Quantization

For xxx ∈ Rhi×wi×di we use xxx[i, j,k] ∈ R to denote taking the i’th value across the first dimension, the
j’th value across the second, and the k’th value across the last. Similarly, xxx[·, ·,k] ∈Rhi×wi denotes the
matrix that is obtained by fixing a particular value for the third dimension of xxx.

For a filter www ∈ Rdi×h f×w f×do , bias bbb ∈ Rdo and input xxx ∈ Rhi×wi×di it suffices to observe that
output entry yyy[i, j,k] can be computed as yyy[i, j,k] = dot(xxxi, j,www[k, ·, ·, ·]) + bbb[k], where xxxi, j ∈ Rh f w f di

vector derived from xxx.1

We consider the activation function ReLU6(x) =min(6,max(0,x)), which is used as the activation
function in the MobileNets family of networks. However, the techniques presented in this section also
work for the more general ReLU.

Getting rid of reals

The scheme of Jacobs et al. [88] can be seen as a type of shifted fixed point encoding. Let α,s be
values of R and z,a values of Z28 (i.e., bytes) and define the function dequants,z(a) = s(a− z) = α ′.
We call s the scale and z the zero-point. This procedure effectively maps the interval [0,28 − 1]
injectively into the discrete I = [−s · z,s(28− 1− z)]. We define the quantization of a value α ∈ I as
quants,z(α

′) where α ′ is the closest number to α that is in the image of dequants,z.

Efficient Inference

We now describe how the quantization scheme just described allows us to compute dot-products (and
thus convolutions) using only integer operations and a single truncation. Furthermore, we describe
how the ReLU6 activation is subsumed by the truncation in the dot-product computation, effectively
meaning can compute ReLU6 free of cost. (The trick applies to any ReLU-like activation function
provided it is clipped to an interval.)

Convolutions. Let ααα = (α1, . . . ,αN), βββ = (β1, . . . ,βN) be two real-valued vectors, and let sα ,zα re-
spectively, sβ ,zβ be their quantization parameters. Let γ = ∑

N
i αiβi be the real-valued output and sγ ,zγ

its quantization parameters. Finally, let ai = quantsα ,zα
(αi), bi = quantsβ ,zβ

(βi) and y = quantsγ ,zγ
(γ).

Observe that

sγ(y− zγ)≈ γ =
N

∑
i=1

αiβi ≈
N

∑
i=1

sα(ai− zα)sβ (bi− zβ )

1xxxi, j is the sub-tensor centered around xxx[i, j, ·], that has been flattened rows first then depth.

30.09.2019 D1.3 Special Purpose MPC Protocols 42



H2020-LEIT-ICT 731583 SODA Deliverable D1.3

And so, by rewriting, we can compute y by

y = zγ +
sαsβ

sγ

N

∑
i=1

(ai− zα)(bi− zβ ). (3.1)

Notice that the computation above requires only integer operations and a single multiplication by the
real value s = (sαsβ )/sγ . Tensorflow handles this multiplication by representing s as a fixed-point
value, which allows computing the final value as an integer multiplication followed by a shift. More
precisely, write s = 2−ns′ where s′ ∈ [0.5,1). Next, s′ is encoded as s′′ ≈ 2−31s′ where s′ is a 32-bit
integer. Notice that this approximates s′ with at least 30 bits of accuracy.

1. Compute t = ∑
N
i (ai− zα)(bi− zβ ),

2. Encode s = (sαsβ )/sγ as described above. Compute t ′ = t · s′ and then t ′ ·2−n−31.

3. Finally, t ′ is rounded to the nearest integer and zγ is added.

As a final thing, we note that the quantization parameters of the bias term needs to satisfy that
zbias = 0 and sbias = (sαsβ )/sγ , since otherwise we would need to perform another floating point
multiplication.

Efficient activation functions. By being clever about the values of s and z, it is possible to skip
computing ReLU6 altogether, a feature that provides a considerable speedup over having to compute
the max function (i.e., comparison). Recall that ReLU6(x) = max(0,min(6,x)), that is, the domain of
ReLU6 is the interval [0,6]. However, this implies that by setting z= 0 and s= 1/255, we have that the
domain of dequants,z is in the domain of ReLU6. In particular, ReLU6(dequants,z(x)) = dequants,z(x)
for all x ∈ Z28 .

3.3 Protocol

Our system model is the standard outsourced computation model with three servers. That is, we
consider a setting with three parties P1, P2 and P3 among which at most one is corrupted. During the
input phase, the model owner secret shares its model among each of the servers and the input owner
does the same with their input. In the end, each server sends their shares of the result to the input
owner who in this way obtains the result of evaluating the model on their input. We use the passively
secure protocol by Araki et al. [11], which is based on replicated secret sharing, and we primarily
employ it in the ring defined by arithmetic modulo 264. We choose to use a ring like Z264 instead of
a field, as usual in MPC, motivated by the fact that such rings have performance benefits in MPC. In
this protocol a value x ∈ Z264 is secret-shared among P1,P2,P3 if each Pi holds a random pair (xi,xi−1)
(indexes wrap modulo 3) such that x1 + x2 + x3 = x mod 264. We denote this sharing by [x]. Clearly,
if the adversary only controls one party passively, it cannot learn anything about x.

3.3.1 Protocol details

Secure Addition and Multiplication. The secret-sharing scheme used is additively homomorphic,
which means that the parties can obtain shares of the sum of two shared values by simply adding
locally their shares. Furthermore, multiplications can be computed with passive security by letting
each party send only one ring element, as described in [11] (and simplified in [101]).

30.09.2019 D1.3 Special Purpose MPC Protocols 43



H2020-LEIT-ICT 731583 SODA Deliverable D1.3

Dot-Products. A central operation in any CNN is to run dot products(e.g. for the matrix multiplica-
tions). When each one of the entries of the input vectors is secret-shared, this would involve n times
the communication of a single secure multiplication, where n is the length of the vectors. Fortunately,
as observed for example in [44], the multiplication protocol from [11] allows such dot-products to be
computed at the communication cost of a single multiplication.

Secure Truncation.

We provide a novel method to truncate a shared value by an unknown amount of bits, which is shared
as well. This is contrast to the typical scenario addressed in MPC which involves truncating a shared
value by a known amount (especially useful for fixed point arithmetic). The idea is to turn the trun-
cation by a secret amount (aka right-shift), into a multiplication by a secret power of 2 (aka left-shift)
followed by a regular truncation. Put differently, in order to obtain a share of b2−k · xe where both x
and k are secret shared, we instead compute 2K−k · 2−K · x where K ≥ k is an upper bound on k and
is public. While this method does require us to use a modulus that is slightly bigger than 64 bits,
the effect on the efficiency is minor. In the following [·] denotes a sharing as used in the MPC. This
protocol proceeds in a number of steps. First we need to compute [2K−k] given [K− k]; next is to
compute [b2−K ·xe] where K is public. We also need a way to reduce a secret shared value by a power
of two, i.e., given [x] we need to be able to compute [x mod 2k].

Reducing a share modulo a power of 2. Suppose parties have a sharing [x] and wish to compute
[y] = [x mod 2k] for a public k. First step is to compute [x′] = [x� (`− k)] where 2` is the modulus
that is used in the MPC (e.g., 64). Note that this is a local operation as it corresponds to multiplying
each share by 2`−k. Next step is to mask [x′] using k′ = `− k random bits. Reveal the result c =
[x′]+ 2k

∑
`−k
i=0 [bi]2i. Shift c to the right by k positions and subtract ∑

`−k
i=0 [bi]2i to obtain the result [y].

Finally, we need to account for a potential wrap around and so need to compute a comparison between
c� k (a public value) and ∑

`−k
i=0 [bi]2i (a secret value). This comparison can be computed as a binary

circuit and we subtract 2`−k from [y] if necessary.

Computing [2K−k]. Given [K − k] = K − [k] we wish to compute [2K−k]. To do so, we first bit-
decompose [K−k] into bits [bi] such that [K−k] =∑i[bi]2i. The desired sharing can then be computed
as the product [2K−k] = ∏i(1+[bi](22i−1)).

Truncation by a public value. Note that b2−K · xe= b2−K · (x+2K−1)c2 Thus it is enough to com-
pute a regular right-shift. We first compute [x′] = [x mod 2K ] using the technique described above.
Define [y] = [x− x′] and note that this corresponds to zeroing the bottom K bits of x; i.e., the bits that
we wish to “shift out”, so to speak. The rest is now very much like the protocol for reducing modulo
a power of 2: Mask the top `−K bits, open the result, shift to the right and undo the masking taking
the potential overflow into consideration.

3.4 Experimental Results

In the full version of this work we run a series of benchmarks that include micro-operations, evaluation
of large MobileNet models, and comparison to previous work.

2This is simply using the fact that bxe= bx+1/2c.

30.09.2019 D1.3 Special Purpose MPC Protocols 44



H2020-LEIT-ICT 731583 SODA Deliverable D1.3

We include in this abstract the evaluation of full-sized networks in the MobileNet family. Some
information about these models can be seen in Table 3.1. We present benchmarks for secure inference
modulo 264 (3.2) and modulo a prime of roughly 64 bits (3.3), and also for active security modulo this
prime. The goal of this is to provide an overview of the different factors that affect the performance
of the computation, like the type of security, the algebraic structure, and the desired accuracy.

We remark that the decision to benchmark our framework on existing models is only for the sake
of simplicity. Given the tools provided by Tensorflow, it would have been also possible to train a
floating-point model in Tensorflow and then convert it to a quantized version of it by using the TOCO
converter from TFLite. We believe that this feature is an important step towards the deployment of
secure inference in realistic scenarios.

Name Top-1 (%) Top-5 (%) Name Top-1 (%) Top-5 (%)

0.25_128 39.5 64.4 0.75_128 55.9 79.1
0.25_160 42.8 68.1 0.75_160 62.4 83.7
0.25_192 45.7 70.8 0.75_192 66.1 86.2
0.25_224 48.2 72.8 0.75_224 66.9 86.9
0.50_128 54.9 78.1 1.00_128 63.3 84.1
0.50_160 57.2 80.5 1.00_160 66.9 86.7
0.50_192 59.9 82.1 1.00_192 69.1 88.1
0.50_224 61.2 83.2 1.00_224 70.0 89.0

Table 3.1: Top 1 and top 5 accuracy of the different models. Each model name is of the format d_s
where d is a multiplier that essentially scales the number of parameters in each layer (thus, smaller d
implies a model that is easier to evaluate). s on the other denotes the size of the input, e.g., s = 128
means that inputs are 128× 128 images. See https://github.com/tensorflow/models/blob/
5fd32ef62e37a8124bf8849f7bea65fbd8cd7bdd/research/slim/nets/mobilenet_v1.md

Name Runetime (s) Comm. (gb) Name Runetime (s) Comm. (gb)

0.25_128 1.7 1.7 0.75_128 5.0 5.0
0.25_160 2.6 2.6 0.75_160 7.8 7.8
0.25_192 3.6 3.7 0.75_192 10.9 11.2
0.25_224 5.0 5.1 0.75_224 15.3 15.3
0.50_128 3.4 3.3 1.00_128 7.4 6.7
0.50_160 5.1 5.2 1.00_160 10.6 10.4
0.50_192 7.2 7.5 1.00_192 20.6 20.4
0.50_224 10.0 10.2 1.00_224 25.9 27.0

Table 3.2: Runtime and communication for securely evaluating various models with a protocol that
uses mod 264.

3.5 Conclusion

Our work shows that securely evaluating a large and meaningful network using MPC, without modify-
ing its accuracy substantially, is practically possible. We also show that some techniques that already

30.09.2019 D1.3 Special Purpose MPC Protocols 45

https://github.com/tensorflow/models/blob/5fd32ef62e37a8124bf8849f7bea65fbd8cd7bdd/research/slim/nets/mobilenet_v1.md
https://github.com/tensorflow/models/blob/5fd32ef62e37a8124bf8849f7bea65fbd8cd7bdd/research/slim/nets/mobilenet_v1.md


H2020-LEIT-ICT 731583 SODA Deliverable D1.3

passive active

Name Runetime (s) Comm. (gb) Runetime (s) Comm. (gb)

0.25_128 7.1 4.4 22.3 12.9
0.25_160 10.9 6.8 34.3 20.1
0.25_192 15.7 9.8 49.0 28.9
0.25_224 21.2 13.3 66.3 39.3
0.50_128 14.0 8.7 47.5 28.2
0.50_160 21.7 13.6 73.8 44.0
0.50_192 30.9 19.5 105.5 63.3
0.50_224 42.2 26.6 143.5 86.1
0.75_128 21.0 13.0 76.7 46.0
0.75_160 32.3 20.4 119.0 71.7
0.75_192 46.2 29.3 171.0 103.2
0.75_224 63.6 39.9 232.9 140.5
1.00_128 28.3 17.4 109.8 66.2
1.00_160 43.3 27.1 170.5 103.3
1.00_192 61.9 39.1 244.3 148.7
1.00_224 83.9 53.2 332.5 202.4

Table 3.3: Runetime and communication for model evaluation using a mod prime protocol for both
active and passive security.

exist in the Machine Learning literature, namely quantization, can be useful for Cryptography re-
searchers as well. Using these techniques we manage to evaluate securely very large networks whilst
preserving their accuracy, with an efficiency that is already practical in many realistic scenarios. Fur-
thermore, for the first time in the literature, we provide running times and memory usages for active
security, which, in spite of being much less practical than the passively secure setting, illustrates that
such a strong notion of security is within reach for some applications.

In general, we believe it is important for the cryptographic community to work closely to the
machine learning community, and we see our work as an early step in this direction.

30.09.2019 D1.3 Special Purpose MPC Protocols 46



Chapter 4

Efficient Secure Ridge Regression from
Randomized Gaussian Elimination

This chapter is based on the paper Efficient Secure Ridge Regression from Randomized
Gaussian Elimination [22], co-authored by SODA researchers, presented at the TPMPC
workshop and the workshop on Privacy-Preserving Machine Learning co-located with
CCS 2019.

4.1 Introduction

Recent years have seen significant advances in privacy-preserving data mining and machine learning.
Secure multiparty computation (MPC) is a promising type of cryptographic protocol for enhancing
the security and privacy properties of existing data mining and machine learning algorithms. Handling
large datasets, however, still poses practical challenges due to the overhead incurred by MPC.

Secure regression is a problem that received much attention as the resulting cryptographic pro-
tocols have the potential of handling relatively large datasets, see, e.g., [62, 79, 110, 75, 71]. When
applied to linear and ridge regression, the overhead for MPC is limited because of the highly linear
nature of the computation. The bulk of the computation consists of taking inner products, which can
be done securely at low cost in many MPC frameworks.

In this paper we develop particularly efficient m-party protocols for ridge regression tolerating a
dishonest minority of up to t passively corrupt parties, 0 ≤ t ≤ (m− 1)/2. We present a range of
practical optimizations, which are combined into a very competitive solution for secure ridge regres-
sion. We present experimental results to support our claims using the MPyC framework for secure
multiparty computation.

4.2 Approach

Ridge regression (or, Tikhonov regularization) is a classic problem in statistics. Nowadays, the prob-
lem is broadly studied and applied in machine learning, and many algorithms have been proposed
covering various types and dimensions of input data. The popular tool Scikit-learn, for instance, pro-
vides six different solvers for ridge regression, most of which also use different approaches for sparse
and dense data [114].

The solver used in the present paper directly uses the closed-form solution for ridge regression,

47



H2020-LEIT-ICT 731583 SODA Deliverable D1.3

cf. Eqs. (4.2) and (4.3). An alternative approach is to approximate the solution using an iterative
solver, viewing ridge regression as an optimization problem minimizing (4.1). Well-known iterative
solvers are stochastic gradient descent and its many variations (e.g., mini-batch gradient descent).

However, there are two major impediments for adopting iterative solvers in an MPC setting.
Firstly, all arithmetic involves real-valued numbers, which needs to be approximated using secure
fixed-point arithmetic (as secure floating-point arithmetic is simply too expensive). The use of se-
cure fixed-point numbers incurs a substantial overhead and could lead to numerical stability issues.
Secondly, one needs to control the number of iterations. In an MPC setting, evaluation of a stopping
criterion may form a bottleneck in itself, and fixing the number of iterations beforehand may demand
a high number of iterations (to ensure convergence for all inputs). The advantage of the iterative
approach is that it generalizes immediately to related machine learning algorithms such as logistic
regression and support vector machines. Adapting the computation of the gradient suffices to solve
these problems as well.

As we show in this paper, there are major advantages to solving the ridge regression problem
directly. It allows us to avoid fixed-point arithmetic entirely. Issues surrounding rounding errors are
limited to the input phase, when real-valued inputs are converted to integral values using appropriate
scaling. From that point on all computations are exact, using integer arithmetic only. The main issue
left is the growth of the numbers, but we will show that even for huge datasets, our approach is
practical and leads to very competitive results in an MPC setting.

The closed-form solution is in fact a matrix equation, which can in turn be solved directly or
iteratively, as we will discuss in Section 4.6.

4.2.1 Roadmap

We present mathematical preliminaries in Section 4.3, and the basics on linear regression and ridge
regression in Section 4.4. Next we introduce basic notation for MPC based on Shamir secret sharing
in Section 4.5. In Section 4.6 we discuss the relevant choices for solving linear systems of equations
in an MPC setting, showing how we avoid the use of rational reconstruction. Section 4.7 contains the
basic protocols for secure linear algebra, which we use in our protocol for secure ridge regression in
Section 4.8. Finally, we discuss the performance in Section 4.9 and conclude in Section 4.10.

4.3 Preliminaries

We use common notation for matrices and vectors. For d ≥ 1, the group of d×d invertible matrices
over a field F is denoted by GLd(F). The groups of d × d lower resp. upper triangular invertible
matrices are denoted by Ld(F),Ud(F) ⊆ GLd(F), and we use L1

d(F) to denote the group of lower
triangular matrices with an all-ones diagonal.

A matrix A∈GLd(F) is said to have an LU-decomposition if A= LU for some L∈L1
d(F) and U ∈

Ud(F). We use LUd(F) to denote the set of all matrices in GLd(F) that have an LU-decomposition.
Note that the LU-decomposition for each A ∈ LUd(F) is unique. Similarly, a matrix A ∈ GLd(F) is
said to have a Cholesky decomposition if A= LLT for some L∈ Ld(F). The Cholesky decomposition
is also unique, and exists over F= R if and only if A is symmetric and positive definite.

For A ∈ GLd(F), we use adjA = det(A)A−1 to denote the adjugate of A. For our approach, a
key property is that if A is integral then so are detA and adjA. That is, if A is a matrix over Z,
then detA ∈ Z and adjA is also a matrix over Z. Furthermore, Hadamard’s inequality states that
|detA| ≤∏

d
i=1 ‖aaai‖2, where aaai are the rows (or columns) of A. For α = ‖A‖max, Hadamard’s inequality

30.09.2019 D1.3 Special Purpose MPC Protocols 48



H2020-LEIT-ICT 731583 SODA Deliverable D1.3

implies |detA| ≤ dd/2αd . If A is symmetric and positive definite, detA is positive and Hadamard’s
inequality becomes detA ≤ ∏

d
i=1 ai,i and we get detA ≤ αd . Finally, Hadamard’s inequality yields

‖adjA‖max ≤ (d−1)(d−1)/2αd−1 as bound for the adjugate.
Gaussian elimination and variations thereof are used to compute detA, adjA, and A−1. For

example, A−1 is computed by transforming the augmented matrix (A | I) into (I | A−1) by means of
Gauss-Jordan elimination. Similarly, if A has an LU-decomposition, applying Gaussian elimination
to A amounts to multiplying A from the left by the lower triangular matrix L−1, resulting in U = L−1A.
Hence, the upper triangular matrix U is obtained without applying any pivoting steps. Putting detA =
detU = ∏

d
i=1 ui,i yields the determinant.

We will perform Gaussian elimination over finite fields of large prime order p, and we will do so
for essentially uniformly random matrices only. As a consequence, there will be no need for pivoting
and all computations will be exact. Inspired by Bareiss [16], we will combine division-free Gaussian
elimination with back substitution such that detA is obtained at almost no extra cost. See Section 4.7.3
for further details.

4.4 Ridge Regression

Ridge regression is a well-known technique in statistics and machine learning [68], which can be
seen as a refinement of the ordinary least squares method used in linear regression. Ridge regression
provides the user with a handle, the regularization parameter λ > 0, that can be used to reduce the
variance of the prediction at the cost of introducing some bias. If λ is set properly, ridge regression can
outperform the ordinary least squares method in terms of the root mean-square error, defined below.
In high-dimensional problems, ridge regression can help to reduce the problem of overfitting.

Given an overdetermined linear system Xwww= yyy, the least squares solution www minimizes ‖Xwww−yyy‖2.
Typically, X is an n× d matrix over R with n� d. Each row of X represents an input record with
d features, and the corresponding entry of yyy represents the known output value. The least squares
solution www = (XTX)−1XTyyy, is used as the optimal weight vector for predicting the output values for
new input records xxx by evaluating xxxTwww.

Ridge regression finds a vector www minimizing

‖Xwww− yyy‖2
2 +λ‖www‖2

2, (4.1)

where we note the presence of the regularization parameter in the second term. The solution www mini-
mizing (4.1) is now given by:

www =
(

XTX +λ I
)−1

XTyyy. (4.2)

To compute www, one solves the linear system Awww = bbb with A = XTX +λ I and bbb = XTyyy. Note that the
regularization parameter λ not only suppresses large entries in www, but also ensures that A is positive
definite, hence invertible: zzzT

(
XTX +λ I

)
zzz = ‖Xzzz‖2

2 +λ‖zzz‖2
2 > 0 for any nonzero zzz, since λ > 0.

In the context of machine learning, the input records X along with the known output values yyy
are called the training set, and the least-squares solution www is called the model. The performance of
the model is evaluated in terms of the root-mean-square error (RMSE) of the model’s predictions.
The model complexity (training error) is defined as the RMSE for the training set, which is equal to
‖Xwww− yyy‖2/

√
n. The generalizability (test error) of the model is defined as the RMSE for a test set

(X ′,yyy′), which is equal to ‖X ′www− yyy′‖2/
√

n′. Overall, the goal is to ensure that both RMSEs are small
and approximately equal to each other.

30.09.2019 D1.3 Special Purpose MPC Protocols 49



H2020-LEIT-ICT 731583 SODA Deliverable D1.3

The performance of a machine learning algorithm critically depends on the quality of the input
data. Extensive data preprocessing may be required in practice to enhance the quality of the input
data. In our experiments we will use standard datasets from the UCI repository, for which most of
the data preprocessing has already been done. The only two tasks that remain before applying ridge
regression to these datasets are (i) feature scaling and (ii) encoding of categorical features.

For feature scaling, we apply min-max scaling to each of the columns of X and to vector yyy as well.
Concretely, all features are scaled to the range [−1,1]. We prefer this form of data normalization
because it requires little processing and does not leak too much information about X and yyy.

To encode categorical features (including Boolean features), we basically use a form of “one-hot
encoding” with respect to the range [−1,1]. For Boolean features, we encode the values True and
False by 1 and −1, respectively. A categorical feature with s possible values is encoded by s Boolean
features, where the value for exactly one of the Boolean features will be set to 1 and the remaining
s−1 Boolean features are set to −1.

4.5 MPC Setting

We consider an MPC setting with m parties tolerating a dishonest minority of up to t passively corrupt
parties, 0≤ t ≤ (m−1)/2. The basic protocols for secure addition and multiplication over a finite field
rely on Shamir secret sharing [19, 74]. For our practical experiments we use the MPyC framework
[123], which succeeds the VIFF framework [72].

Let p > m be a prime. We use [a]p or [a] to denote a secret-shared value a ∈ Zp, where a is inter-
preted as a signed integer in the range {−bp/2c, . . . ,bp/2c}. We assume that secure field arithmetic
(+,−,∗,/ modulo p) is supported efficiently as well as secure generation of random numbers (e.g.,
[r] with r ∈R Zp).

We highlight three auxiliary protocols which are of particular relevance for our approach.
For secure dot products [xxx] · [yyy] with xxx,yyy ∈ Zd

p, we recall that the complexity is the same as for a
single secure multiplication, except for local computations. This extends to secure matrix products
[A][B] with A,B∈Zd×d

p , for which the complexity is equivalent to d2 secure multiplications in parallel.
Next, to generate [r] and [1/r] for a random r ∈R Z∗p, one proceeds as follows: generate [r], [u]

with r,u ∈R Zp, open [r][u] to obtain ru, and output [r] and [1/r] = [u]/(ru). For large p, ru 6= 0 will
hold with overwhelming probability; if ru = 0 simply try again with fresh r and u.

Finally, we will also use secure conversion between secret-shared values in different prime fields.
In particular, for primes p and q satisfying p > q > 2κ+`, where κ is a security parameter, we use a
secure protocol for converting [a]q into [a]p, −2`−1 ≤ a < 2`−1. Roughly, such a protocol proceeds
by generating [r]q and [r]p for a random r ∈ [0,2`+κ). Then the value of a+ r is opened, which is
statistically indistinguishable from random for κ sufficiently large, and one sets [a]p = a+ r− [r]p.

4.6 Solving Systems of Linear Equations

As outlined in Section 4.4, we divide ridge regression into two main stages. In the first stage we
compute A = XTX +λ I and b = XTy, and in the second stage we solve Awww = bbb to find www. For secure
ridge regression, the most interesting and challenging part will be the second stage, and in this section
we motivate our approach for solving Awww = bbb.

In numerical analysis one distinguishes two major types of solution methods for systems of linear
equations. Direct methods, such as Gaussian elimination, run in a finite number of steps and compute
an exact solution in the absence of rounding errors. Iterative methods, such as conjugate gradient,

30.09.2019 D1.3 Special Purpose MPC Protocols 50



H2020-LEIT-ICT 731583 SODA Deliverable D1.3

yield approximate solutions within a limited amount of time, even for very large matrices. In contrast
to some other recent work (e.g., [71]), we will choose a direct method to solve Awww= bbb in our protocols
for secure ridge regression. Below we explain our reasons for doing so.

An important observation is that we can actually use exact computation for secure ridge regression.
Instead of relying on fixed-point arithmetic—or even worse floating-point arithmetic—in an MPC
setting, we will only use exact integer arithmetic in our protocols. This way we take advantage of the
fact that secure integer arithmetic is efficient even for large values when using Shamir secret sharing.
Moreover, we can borrow techniques from the related setting of secure linear algebra over finite fields
[46].

We will make sure that the input data (contained in X and yyy) are scaled to integer values, basically
by multiplying each input value with 2α and rounding to the nearest integer for a fixed value of α .
The value of α must be sufficiently large to ensure that the final results will be accurate. We will refer
to α as the accuracy parameter.

Since A is invertible, solving Awww = bbb is equivalent to computing www = A−1bbb. Therefore, even
if A contains integer values only, the solution www will in general contain rational values. As A−1 =
(detA)−1 adjA, however, it suffices to compute www′ = (adjA)bbb and z = detA, from which www can be
recovered as www = www′/z. Here, both www′ and z are integral. We compute www′ and z by first reducing
the augmented matrix (A | b) to echelon form using Gaussian elimination and then applying back
substitution to recover www.

To perform secure Gaussian elimination on (A | b) there are several options. A first idea is to
use Gaussian elimination (row reduction) directly, which amounts to repeatedly selecting a pivot and
updating the matrix accordingly. However, oblivious row reduction, hiding the position of the pivot
and so on, is computationally very costly: searching for a nonzero element in the pivot column is
already nontrivial in a secure setting, and obliviously swapping entire rows to move the pivot to the
diagonal is even much more costly.

A common technique in numerical analysis to avoid pivot selection is the use of preconditioning.
Roughly, the idea is to solve the equivalent system RAwww = Rbbb for a random matrix R, instead of
the original system Awww = bbb. Matrix R is assumed to be invertible, which is true with overwhelming
probability in many settings. When solving linear systems over R, such an approach is numerically
unstable and leads to poor results. When solving linear systems over a finite field, however, numerical
instability is of no concern. We will follow this approach.

The upshot of computing (adjA)bbb and detA separately is that we will also avoid the use of rational
reconstruction. In the next section we will show why this lets us essentially halve the size of the prime
modulus for the finite field arithmetic compared to other papers. For instance, [75] relies on rational
reconstruction and uses a modulus which should be large enough to “hold” the product of (adjA)bbb
and detA.

4.7 Secure Linear Algebra

We present protocols for computing determinants, matrix inverses, and solutions to linear systems.
Given an invertible matrix A ∈ Zd×d , we compute the results over Zp assuming p is sufficiently large.
E.g., for −p/2 < detA < p/2, detA ∈ Z∗p and A is properly embedded in Zd×d

p . Assuming further
bounds on the entries of A and bbb, we will show how to compute A−1 and A−1bbb over Zp as well.

30.09.2019 D1.3 Special Purpose MPC Protocols 51



H2020-LEIT-ICT 731583 SODA Deliverable D1.3

Protocol 1 Det([A]) A ∈ GLd(Zp)

1: Generate [R], [detR−1] with R ∈R LUd(Zp) using Protocol 2.
2: Open RA← [R][A].
3: Compute [detA] = det(RA)[detR−1].
4: Return [detA].

4.7.1 Secure Determinant

Cramer and Damgård presented a protocol for secure computation of detA over any finite field [46],
which is reminiscent of Bar-Ilan and Beaver’s protocol for secure multiplicative inverses [14]. The
idea is to securely generate a random invertible matrix [R] together with its determinant [detR], open
the randomized matrix RA, and finally compute [detA]. We follow the same approach in Protocol 1,
except that we improve upon the way random matrix R is generated in several ways.

Ideally, R is generated as a random matrix in GLd(Zp). To securely compute detR as well, matrix
R is limited to the slightly smaller range LUd(Zp) of matrices that have an LU-decomposition. The
following lemma shows that uniformly random matrices in LUd(Zp) are statistically indistinguishable
from uniformly random matrices in GLd(Zp). Therefore, opening RA reveals negligible information
on A only.

Lemma 2. ∆(R;G)≤ d/p, for R ∈R LUd(Zp) and G ∈R GLd(Zp).

Proof. Since LUd(Zp)⊆ GLd(Zp) and R and G are both uniform we have

∆(R;G) = 1
2 ∑

x∈GLd(Zp)

|PrR = x−PrG = x|= 1−
|LUd(Zp)|
|GLd(Zp)|

.

Since |LUd(Zp)|= pd2−d(p−1)d and |GLd(Zp)| ≤ pd2
, we have

∆(R;G)≤ 1−
(

p−1
p

)d

= 1−
(

1− 1
p

)d

≤ d
p
,

using Bernoulli’s inequality in the last step.

To sample a matrix R securely from LUd(Zp), we use Protocol 2. The protocol also outputs the
determinant of R, or rather its inverse. Random matrices in L1

d(Zp) and Ud(Zp) can be generated
easily, provided we can securely generate random elements of Zp. To ensure that U is invertible,
we generate ui,i ∈R Zp for i = 1, . . . ,d, and then apply secure inversion to detU = ∏

d
i=1 ui,i. With

negligible probability detU = 0, in which case secure inversion will fail and we have to try again. With
overwhelming probability, however, detU 6= 0 and secure inversion will succeed. In total, Protocol 2
roughly uses d2 random elements from Zp.

Our protocol for generating random matrices improves upon Cramer and Damgård’s protocol
Π0 [46, p. 126] in several respects. The main difference is that protocol Π0 depends on a redundant
type of LU-decomposition in which the diagonals of both L and U consist of elements in Z∗p. By fixing
the diagonal of L to all ones, the LU-decomposition used in our protocol is unique. As an immediate
consequence, our proof for statistical indistinguishability is much simpler (cf. Lemma 2). Moreover,
the complexity of the protocol is reduced as we do not need to generate the diagonal of L at random,
and we do not need to compute detL either. Finally, as a further optimization, we only use one secure

30.09.2019 D1.3 Special Purpose MPC Protocols 52



H2020-LEIT-ICT 731583 SODA Deliverable D1.3

Protocol 2 RndMatDet(d)

1: Generate [L] with L ∈R L1
d(Zp).

2: Generate [U ], [detU−1] with U ∈R Ud(Zp).
3: Compute [R] = [L][U ].
4: Set [detR−1] = [detU−1].
5: Return [R], [detR−1].

Protocol 3 AdjDet([A]) A ∈ GLd(Zp)

1: Generate [R], [detR−1] with R ∈R LUd(Zp) using Protocol 2.
2: Open RA← [R][A].
3: Reduce (RA | [R]) to obtain [A−1] by Gauss-Jordan elimination over Zp.
4: Compute [detA] = det(RA)[detR−1].
5: Compute [adjA] = [detA][A−1].
6: Return [adjA], [detA].

inversion throughout the entire protocol (to perform the secure zero-test and inversion for detU all at
the same time).

Apart from generating a random matrix R and its inverse determinant, Protocol 1 mainly performs
a secure matrix multiplication. The computation of det(RA) is done locally, so we might use any
algorithm for computing determinants to implement this step. However, Lemma 2 helps us save some
work for the local computation as well. The lemma basically implies that RA is statistically close to a
uniformly random matrix in LUd(Zp), and therefore we can perform Gaussian elimination to compute
det(RA) without any pivoting, as shown below.

4.7.2 Secure Matrix Inversion

We next present Protocol 3 for secure matrix inversion, which is of independent interest. Since A−1

will in general have rational entries for a matrix A ∈ Zd×d , as discussed above, we will use the pair
(adjA,detA) as representation of A−1. This way we avoid any rational arithmetic, and, moreover, we
can use a similar embedding for A in Zd×d

p as for the determinant, using the bound for ‖adjA‖max
from Section 4.3 to choose p sufficiently large.

If we stick to the common approach of computing A−1 = (detA)−1 adjA over Zp, such that adjA
and detA can be recovered using rational reconstruction over Zp, the required size for p would be
roughly twice as large.

4.7.3 Secure Linear Solver

Finally, we present Protocol 4 for securely solving a linear system, in which we avoid performing a full
matrix inversion. In step 3 we apply Gaussian elimination to the augmented matrix (RA | [R][bbb]). As
explained in Section 4.6, this can be done without pivoting. Matrix RA is first transformed into upper-
triangular form, and then we apply back substitution to compute [A−1bbb]. For Gaussian elimination
on (RA | [R][bbb]), we use the division-free variant (see, e.g., [16]). Combined with back substitution,
we achieve that det(RA) is obtained at almost no additional cost. In total we need 2

3 d3 + O(d2)
multiplications, 1

3 d3 +O(d2) modular reductions, and exactly n inversions modulo p for step 3.

30.09.2019 D1.3 Special Purpose MPC Protocols 53



H2020-LEIT-ICT 731583 SODA Deliverable D1.3

Protocol 4 LinSol([A], [bbb]) A ∈ GLd(Zp), bbb ∈ Zd
p

1: Generate [R], [detR−1] with R ∈R LUd(Zp) using Protocol 2.
2: Open RA← [R][A].
3: Solve (RA | [R][bbb]) to obtain [A−1bbb] by Gaussian elimination over Zp.
4: Compute [detA] = det(RA)[detR]−1.
5: Compute [(adjA)bbb] = [detA][A−1bbb].
6: Return [(adjA)bbb], [detA].

Protocol 5 Ridge([X ]q, [yyy]q,λ ) X ∈ Zn×d
q ,yyy ∈ Zn

q,λ ∈ N

1: Compute [A]q = [XT]q[X ]q +λ I. . A = XTX +λ I
2: Compute [bbb]q = [XT]q[yyy]q. . bbb = XTyyy
3: Convert [(A | bbb)]q to [(A | bbb)]p.
4: Compute ([(adjA)bbb]p, [detA]p) = LinSol([(A | bbb)]p).
5: Set [(detA)www]p = [(adjA)bbb]p. . www = A−1bbb
6: Return [(detA)www]p, [detA]p.

4.8 Secure Ridge Regression

In this section we present our protocol for ridge regression, see Protocol 5. All entries of X and yyy are
assumed to be in [−2α ,2α ]∩Z for an appropriate value of the accuracy parameter α (i.e., normalized
to [−1,1] as explained in Section 4.4, scaled by a factor of 2α , and rounded to the nearest integer).
The regularization parameter λ is scaled accordingly. We note that parameter α is between 5 and 10
in our experiments, cf. Table 4.2.

The two main stages of ridge regression are performed over two different prime fields. In the first
stage, XTX +λ I and XTyyy are computed over a relatively small field Zq, while www = A−1bbb is computed
over a substantially larger field Zp in the second stage. See Table 4.2 for some typical sizes of p and
q. Since n is typically very large as well, cf. Table 4.1, secure computation of XTX over Zp would put
excessive demands on time and space utilization.

The conversion in step 3 of the protocol is done as described at the end of Section 4.5. The sizes
for primes p and q are determined in the following lemma.

Lemma 3. Let β = ‖(X | yyy)‖max. Correctness of Protocol 5 follows if

q
2
> nβ

2 +λ +2κ and
p
2
> d(d−1)

d−1
2 (nβ

2 +λ )d .

Proof. For prime q we need that q/2 > ‖(A | bbb)‖max. Each entry of (A | bbb) is a dot product of two
length-n vectors with entries bounded in absolute value by β , plus λ for the diagonal of A. Therefore,
‖(A | bbb)‖max≤ nβ 2+λ . To allow for secure conversion from Zq to Zp, we require q/2> nβ 2+λ +2κ .

For prime p we need that p/2 > detA and p/2 > ‖(adjA)bbb‖∞. We use the bounds for detA and
adjA obtained from Hadamard’s inequality in Section 4.3 as follows. For the determinant of A, we
have the bound detA ≤ (nβ 2 +λ )d since A is symmetric positive definite. For the adjugate of A, we
have the bound ‖(adjA)‖max ≤ (d−1)

d−1
2 (nβ 2 +λ )d−1. So, together with the bound ‖bbb‖∞ ≤ nβ 2, we

take p/2 > d(d−1)
d−1

2 (nβ 2 +λ )d as overall bound.

30.09.2019 D1.3 Special Purpose MPC Protocols 54



H2020-LEIT-ICT 731583 SODA Deliverable D1.3

id dataset n d target(s) train RMSE test RMSE

1 Student Performance 395 30 G3 0.38 0.46
2 Wine Quality red 1,599 11 quality 0.16 0.16
3 Wine Quality white 4,898 11 quality 0.19 0.19
4 Year Prediction MSD 515,345 90 year 0.21 0.21
5 Gas Sensor Array methane 4,178,504 16 ethylene methane 0.29 0.34 0.29 0.34
6 Gas Sensor Array CO 4,208,261 16 ethylene CO 0.34 0.34 0.34 0.34
7 HIGGS 11,000,000 7 class 0.97 0.97

Table 4.1: UCI datasets. RMSEs for ridge regression with Scikit-learn.

4.9 Performance Evaluation

We have performed several experiments using the UCI datasets [63] shown in Table 4.1. Each dataset
is randomly split into a 70% training set and a 30% test set (except for dataset Year prediction MSD,
for which we respect its predefined training/test split, taking the first 463715 rows to form the training
set and the remaining 51630 rows are used for testing). The RMSEs reported for training and testing
are obtained using the Cholesky solver provided for ridge regression in Scikit-learn [114], setting
λ = 1. Note that the Gas Sensor Array datasets have two targets, for which the RMSEs are reported
separately. To handle multiple targets, we have generalized Protocol 5 in the obvious way, replacing
vector yyy by a matrix Y with one column per target.

We have run our protocol for secure ridge regression in a 3-party setting using the values for accu-
racy parameter α shown in Table 4.2. For each (normalized) dataset we have tried increasingly larger
values for α until the errors became insignificant (below 0.1% relative to the RMSEs of Table 4.1). We
have refrained from tuning the regularization parameter λ , and simply set λ = 22α (which corresponds
to λ = 1 after scaling). The bit lengths |p| and |q| are determined from the bounds in Lemma 3, using
β = 2α and κ = 30. The total running time for Protocol 5 comprises two parts: (A,bbb)-time represents
the time for computing [A] and [b] (steps 1–2), while A−1bbb-time covers the time for Protocol 4. The
time for the conversion in step 3 is negligible.

Our implementation is written in Python using the MPyC package [123, ridgeregression.py]. The
experiments were done using three PCs, connected via a Netgear GS208-100PES Ethernet switch.
Each PC was running on Windows 8.1 Enterprise (64-bit) with an Intel Core i7-4770 CPU at 3.40GHz
and 16GB of RAM. Table 4.2 compares our results to three other solutions for secure ridge regression
from the literature. The times reported are purely indicative, and give a basic idea of the performance
of the various solutions.

We note that the previous works shown in Table 4.2 exploit the locality of the input data, assum-
ing that the data is either partitioned horizontally or vertically. For example, Nikolaenko et al. [110]
assume the dataset is partitioned horizontally, allowing them to compute A and bbb using additive homo-
morphic encryption only. In our work, we do not make any specific assumptions on the distribution
of the input data; any data provider simply sends secret shares of its data to the respective parties
performing the secure computation (using log2 q bits per share). Thus, in our experiments, each party
holds shares of the entire dataset.

Also, these previous works [110, 71, 75] rely on a so-called 2-server approach requiring two non-
colluding parties (e.g., a “crypto service provider” and an “evaluator”). For our solution, the number

30.09.2019 D1.3 Special Purpose MPC Protocols 55

https://github.com/lschoe/mpyc/tree/master/demos/ridgeregression.py


H2020-LEIT-ICT 731583 SODA Deliverable D1.3

This work [110] [75] [71]

id α |q| |p| (A,bbb) A−1bbb total HP HP VP VP 32-bit VP 64-bit

1 6 54 1316 0.13 1.48 1.61 - 39.76 328.06 5 (-0.0%) 35 (-0.0%)
2 7 58 314 0.02 0.08 0.10 39 - - - -
3 8 61 357 0.04 0.12 0.16 45 4.09 - 0 (4.2%) 4 (-0.0%)
4 6 64 3105 237 18.3 255 - - - 230 (0.0%) 808 (0.0%)
5 8 71 675 62.8 0.05 62.9 - - - - -
6 9 73 709 63.0 0.05 63.1 - - - 42 (5.2%) 69 (0.0%)
7 5 66 277 34.9 0.12 35.0 - - - - -

Table 4.2: Results of this work compared to the literature. All times are in seconds. HP/VP stand
for horizontal/vertical partitioning. 32-bit and 64-bit refer to bit lengths used for secure fixed-point
arithmetic. Accuracy α yields relative errors below 0.1%. The relative errors reported by [71] are also
given.

n d This work [71]

50,000 20 1s 2s
50,000 100 24s 32s
500,000 20 11s 18s
500,000 100 3m29s 6m1s

1,000,000 100 6m57s 12m42s
1,000,000 200 28m30s 49m56s

Table 4.3: Comparison of (A,bbb)-times for synthetic data.

of colluding parties tolerated is scalable, assuming an honest majority.
The competitiveness of our solution is also confirmed by Table 4.3, showing our results for a range

of synthetic datasets compared to the most favorable results reported by Gascón et al. [71] (for their
3-party setting).

4.10 Concluding Remarks

Assuming that matrix X is of full column rank, Protocol 5 can also be used for secure linear regression
by setting λ = 0. If matrix X is distributed among several data providers, however, ensuring that X
is of full rank need not be trivial. For instance, in a vertical data partitioning it may not that easy
to detect a redundant feature (used by multiple data providers). Setting λ > 0 removes the need to
remove such redundant columns.

Our results also extend to the underdetermined case n < d. In this case, the closed form solution
given by Eq. (4.2) can be rewritten as

www = XT
(

XXT+λ I
)−1

yyy, (4.3)

30.09.2019 D1.3 Special Purpose MPC Protocols 56



H2020-LEIT-ICT 731583 SODA Deliverable D1.3

Protocol 6 Ridge([X ]q, [yyy]q,λ ) X ∈ Zn×d
q ,yyy ∈ Zn

q,λ ∈ N

1: Compute [A]q = [X ]q[XT]q +λ I. . A = XXT+λ I
2: Convert [(A | X | yyy)]q to [(A | X | yyy)]p.
3: Compute ([(adjA)yyy]p, [detA]p) = LinSol([(A | yyy)]p).
4: Compute [(detA)www]p = [XT]p[(adjA)yyy]p. . www = XTA−1yyy
5: Return [(detA)www]p, [detA]p.

using that (XTX +λ I)XT = XTXXT+λXT = XT(XXT+λ I).
Modifying our protocol for ridge regression accordingly results in Protocol 6. In step 4 of the

protocol the secret-shared matrix X converted to the large prime field Zp is used to compute the
output vector www. Since typically d � n, a relatively small number of conversions n per entry of the
length-d output vector www are performed. Setting λ = 0 for this protocol yields a solution for secure
linear regression in the case that X is of full row rank.

The approach presented in this paper is generalized in follow-up work by Bouman and de Vreede
[33], in which they show how to compute the Moore-Penrose pseudoinverse securely. Pseudoinverses
are much harder to compute securely as one needs to hide all information about the rank of the input
matrix.

Details about the handling of the input and output for our secure ridge protocols are beyond
the scope of this paper. For instance, one needs to decide how much information the parties are
willing to leak when normalizing their joint datasets. Also, the parties may jointly need to determine
a suitable value for the regularization parameter λ (hyperparameter tuning). Similarly, the output
[(detA)www]p, [detA]p of our secure ridge protocols can be handled in lots of ways. These two values
may simply be revealed, accepting leakage of the exact value of the determinant. Alternatively, these
values may be converted to shares over Zp′ , where p′ is of double length compared to p, followed by
rational reconstruction modulo p′ to recover www in the clear.

30.09.2019 D1.3 Special Purpose MPC Protocols 57



Chapter 5

Efficient Secure Computation with Silent
Preprocessing

This chapter is based on the papers Efficient Pseudorandom Correlation Generators:
Silent OT Extension and More [36] and Efficient Two-Round OT Extension and Silent
Non-Interactive Secure Computation [35], co-authored by SODA researchers, published
at IACR Crypto 2019 and ACM CCS 2019.

5.1 Introduction

There is a large body of work on optimizing the concrete efficiency of secure computation protocols
via input-independent preprocessing. By securely generating many instances of simple correlations,
one can dramatically reduce the online communication and computation costs of most existing proto-
cols.

To give just one example, multiple independent instances of a random oblivious transfer1 (OT)
correlation can be used for secure two-party computation of Boolean circuits in the passive model,
with communication cost of only two bits per party per (nonlinear) gate, and with computation cost
that is comparable to computing the circuit with no security requirements at all [78]. Thus, assuming
a fast communication network, protocols based on correlated randomness can achieve near-optimal
performance.

The main challenge in applying this approach is the high concrete cost of securely generating
the correlated randomness. Traditional solutions involve carefully optimized special-purpose secure
computation protocols that have a high communication cost for each instance of the desired correla-
tion [21, 56]. This holds even for the case of OT correlations, for which relatively fast OT extension
techniques are known [85, 13, 94]. Moreover, even if offline communication is cheap, the cost of
storing large amounts of correlated randomness for each party with whom a future interaction might
take place can be significant.

Motivated by the limitations of traditional approaches for generating and storing correlated ran-
domness, the notion of a pseudorandom correlation generator (PCG) was recently proposed and
studied by Boyle et al. [34, 36]. The goal of a PCG is to compress long sources of correlated ran-
domness without violating security. More concretely, a (two-party) PCG replaces a target two-party
correlation, say many independent OT correlation instances, by a pair of short correlated keys, which

1In (a single instance of) a random OT correlation, one party obtains a pair of random bits (more generally, strings)
(s0,s1) and the other obtains the pair (r,sr) for a random bit r.

58



H2020-LEIT-ICT 731583 SODA Deliverable D1.3

can be “silently” expanded without any interaction. The process of generating the correlated keys
and locally expanding them should emulate an ideal process for generating the target correlation not
only from the point of view of outsiders, but also from the point of view of insiders who can observe
one of the two keys. Among other results, the aforementioned works of Boyle et al. [34, 36] obtain
concretely efficient constructions of PCGs for OT correlations and vector oblivious linear evaluation
(VOLE) correlations [87, 8] based on variants of the Learning Parity with Noise assumption [23].
These PCG constructions are motivated by the goal of secure computation with silent preprocess-
ing, where a low-communication input-independent setup, followed by local (“silent”) computation,
enables a lightweight “non-cryptographic” online phase once the inputs are known.

However, towards realizing this goal, one major challenge remains: how can the pair of keys be
securely generated? While the keys are short, their sampling algorithm is quite complex and involves
multiple invocations of cryptographic primitives. Thus, even applying the fastest general-purpose
protocols for generating these keys (e.g., optimized protocols based on garbled circuits [129]) incurs
a very significant overhead.

An alternative approach for distributing the PCG key generation, suggested in [34, 36], relies on a
recent special-purpose protocol of Doerner and shelat [60] for secure key generation of a distributed
point function (DPF) [77, 37]. This protocol only makes a black-box use of symmetric cryptography
and a small number of oblivious transfers, and hence it is also concretely efficient. Using this protocol
for distributing the key generation of a PCG for OT correlations, Boyle et al. [36] obtained a silent
OT extension protocol that generates (without any trusted setup) a large number of pseudo-random
OTs from a small number of base OTs, using a low-communication setup followed by silent key
expansion [36].

While the silent OT extension protocol from [36] and other protocols obtained using this approach
have good concrete efficiency, they also have several limitations. First, they require a large number
of communication rounds that grows (at least) logarithmically with the output length. Second, they
are only secure against passive parties. Both of the above limitations are inherited from the DPF key
generation protocol of [60]. Finally, their concrete efficiency estimates are not backed by an actual
implementation, and ignore possible cache-misses and other system- and network-related sources of
slowdown.

5.1.1 Our Contribution

In this work, we address the above limitations by making the following contributions.

Two-Round Silent OT Extension. We present the first concretely efficient two-round OT extension
protocol, based on a variant of the LPN assumption. The protocol has a silent preprocessing feature,
allowing the parties to push the bulk of the computational work to an offline phase. It can be used
in two modes: either a random-input mode, where the communication complexity is sublinear in the
output length, or a chosen-input mode, where the communication is roughly equal to the total input
length. This applies even to the more challenging case of 1-bit OT, for which standard OT extension
techniques that make a black-box use of symmetric cryptography [85, 13, 98, 94] have a high com-
munication overhead compared to the input length. A key idea that underlies this improvement is
replacing the DPF primitive in the PCG for OT from [36] by the simpler puncturable pseudorandom
function (PPRF) primitive [97, 32, 38]. We design a parallel version of the distributed key generation
protocol from [60] that applies to a PPRF instead of a DPF.

Our OT extension protocol bypasses a recent impossibility result of Garg et al. [70] on 2-round
OT extension due to the use of the LPN assumption. While our construction (inevitably) does not

30.09.2019 D1.3 Special Purpose MPC Protocols 59



H2020-LEIT-ICT 731583 SODA Deliverable D1.3

fall into the standard black-box framework considered in [70], it still has a black-box flavor in that
it only invokes a syndrome computation of any error-correcting code for which the LPN assumption
holds. We remark that aside from its concrete efficiency, our 2-round OT extension protocol can
be based on a conservative variant of (binary) LPN in a noise regime that is not known to imply
public-key encryption, let alone oblivious transfer. Concretely, it can be instantiated by binary LPN
in which the Hamming weight of the noise is higher than the n1/2 bound required by the construction
of Alekhnovich [5] and its variants.

The technique we use for generating OT correlations in two rounds can also be applied to VOLE
correlations, as well as general protocols for non-interactive secure computation (NISC) with silent
preprocessing.

Active Security. We present simple, practical techniques for secure distributed setup of PPRF keys
with a weak form of active security. This suffices to upgrade our passive OT and VOLE protocols to
active security, at a very low cost. Our main protocols in this setting have 4 rounds of interaction,
but this can be reduced to 2 rounds using the Fiat-Shamir transform. We can also use this to obtain
actively secure silent NISC or two-round OT extension on chosen inputs. These protocols are based
on slightly stronger variants of LPN, where the adversary is allowed a single query to a one-bit leakage
function on the error vector.

Implementation. We demonstrate the efficiency of our constructions with an implementation of
our random OT extension protocol. The most costly part of the implementation is a large matrix-
vector multiplication, which comes from applying the LPN assumption. We optimize this using a
variant of LPN with quasi-cyclic codes, similarly to several recent, candidate post-quantum secure
cryptosystems [9, 4], and present different tradeoffs with parameter choices. Our protocols have a
very low communication overhead and perform significantly faster than previous, state-of-the-art pro-
tocols [85, 13, 94] in environments with restricted bandwidth. For instance, in a 100Mbps WAN
setting, we are around 5x faster, and this improves to 47x in a 10MBps WAN. This is because, while
our computational costs are around an order of magnitude higher, we need around 1000–2000 times
less communication than the other protocols. We expect that additional optimizations of our imple-
mentation and the underlying error-correcting code will further improve the computational cost.

Applications. As well as the new application to NISC with silent preprocessing, our protocols can
be applied to a range of traditional secure computation tasks. Below we mention just a few areas
where we expect silent OT extension and VOLE to have an impact.

• Semi-honest MPC for binary circuits. In the passive “GMW protocol” [78], the correlated ran-
domness needed to evaluate a Boolean circuit can be obtained from two random OTs per AND
gate. Plugging in our random OT extension, we obtain a practical 2-PC protocol where each
party communicates just 2 bits per AND gate on average. This is around 30x less communica-
tion than the state-of-the-art [59].

• Malicious MPC for binary circuits. Protocols based on authenticated garbling [129, 130] and
BMR [81] are currently the state-of-the-art in actively secure MPC for binary circuits in a high-
latency network. The main cost in these protocols comes from a preprocessing phase, where
the parties use a large number of random, correlated oblivious transfers to produce correlated
randomness. Our protocol can produce the same kind of oblivious transfers with almost zero

30.09.2019 D1.3 Special Purpose MPC Protocols 60



H2020-LEIT-ICT 731583 SODA Deliverable D1.3

communication, and we estimate this could reduce the overall communication in these protocols
by around an order of magnitude.

• Malicious MPC for arithmetic circuits. The “SPDZ” family of protocols [21, 56, 54, 95, 96]
uses information-theoretic MACs to achieve active security in MPC based on secret sharing.
A large batch of these MACs can be created using a single instance of a long, random VOLE
correlation, with essentially optimal communication. Plugging in our actively secure VOLE
construction will reduce the costs of previous works that use either homomorphic encryption or
string-OT to create MACs.

• Private set intersection (PSI). In circuit-based PSI, a generic 2-PC protocol is used to first com-
pute a secret-sharing of the intersection of two sets, and then perform some useful computation
on the result [82, 116, 117]. With the improvements to GMW mentioned above, we can expect
to obtain a similar reduction in communication for these families of PSI protocols.

5.1.2 Technical Overview

We now give an overview of our silent constructions in the passive and active settings. For simplicity,
we focus here on the case of 1-out-of-2 oblivious transfer.

We start by recalling the high-level idea of the pseudorandom correlation generators for vector-
OLE (VOLE) and OT from [34, 36]. These constructions distribute a pair of seeds to a sender and a
receiver, who can then locally expand the seeds to produce many instances of pseudorandom OT or
VOLE. To do so, they use two main ingredients: a variant of the LPN assumption, and a method for
the two parties to obtain a compressed form of random secret shares v0,v1, satisfying

v1 = v0 + e · x ∈ FN
2λ (5.1)

where e ∈ {0,1}N is a random, sparse vector held by one party, and x ∈ F2λ is a random field element
held by the other party.

Given this, the shares can be randomized by taking a public, binary matrix H that compresses
from N down to n < N elements, and locally multiplying each share with H. This works because
u = e ·H is pseudorandom under a suitable variant of LPN. Writing v = v0 ·H and w = v1 ·H, from
(5.1) we then get w = v+ux. This can be seen as a set of random correlated OTs, where ui ∈ {0,1}
are the receiver’s choice bits, and (vi,vi + x) are the sender’s strings, of which the receiver learns wi.
These can be locally converted into random string-OTs with a standard hashing technique [85].

To obtain a compressed form of the shares in (5.1), the constructions of [34, 36] used a distributed
point function (DPF) [77, 37]. Our first observation is that DPF is an overkill for this application,2

and can be replaced with the simpler puncturable pseudorandom function (PPRF) primitive. A PPRF
is a PRF F such that given an input x, and a PRF key k, one can generate a punctured key k{x}
which allows evaluating F at every point except for x, and does not conceal any information about the
value F(k,x). A PPRF can be built from any length-doubling pseudorandom generator, using a binary
tree-based construction [97, 32, 38].

In the setup procedure, we will give the sender a random key k and x, and give to the receiver
a random point α ∈ {1, . . . ,N}, a punctured key k{α}, and the value z = F(k,α)+ x. Given these
seeds, the sender and receiver can now define the expanded outputs, for i = 1, . . . ,n:

2 In contrast, we do not know how to replace DPF by PPRF in some of the other PCG constructions from [36], in-
cluding the LPN-based constructions for low-degree correlations and the PRG-based constructions for one-time-truth-table
correlations.

30.09.2019 D1.3 Special Purpose MPC Protocols 61



H2020-LEIT-ICT 731583 SODA Deliverable D1.3

v0[i] = F(k, i), v1[i] =

{
F(k, i) i 6= α

z otherwise

These immediately satisfy (5.1), with e as the α-th unit vector. To obtain sharings of sparse e
with, say, t non-zero coordinates, as needed to use LPN, we repeat this t times and XOR together all
t sets of outputs.

Conceptually, this construction is simpler than using a DPF, and moreover, as we now show, it
brings several efficiency advantages.

Two-Round Setup of Puncturable PRF Keys. We present a simple, two-round protocol for dis-
tributed the above setup with passive security, inspired by the DPF setup protocol of Doerner and
shelat [60]. The core of our protocol is the following procedure. For each of t secret LPN noise coor-
dinates α j ∈ [N] known to the receiver, the sender generates a fresh PRF key k j, and wishes to obliv-
iously communicate a punctured key k j{α j} and hardcoded punctured output z j = PRF(k j,α)+ x
to the receiver. Combined, this yields a secret sharing of the vector x · e, as required. To do so, for
each k{α}, the parties made use of ` = logN parallel OT executions: the sender’s ` message pairs
correspond to appropriate sums of partial evaluations from a consistent GGM PRF tree and his secret
value x, and the receiver’s ` selection bits correspond to the bits of his chosen path α .

Compared with previous works based on distributed point functions [34, 36, 60], the number of
rounds of interaction collapses from O(logN) to just two, given any two-round OT protocol. This is
possible since the punctured point α is known to the receiver, whereas when α is secret-shared as in
a DPF, the OTs in the setup procedure seem hard to parallelize.

Two-Round OT Extension and Silent NISC. We observe that in the two-round setup, the receiver
can already compute part of its output before sending the first round message. In the case of OT,
this part corresponds to its random vector of choice bits u. This means that the receiver can already
derandomize its OT outputs in the first round, by sending in parallel with its setup message the value
u+ c, where c is its chosen input vector. Since the sender can compute its random OT outputs after
the first round, this leads to a two-round OT extension protocol that additionally enjoys the “silent
preprocessing” feature of pushing the bulk of the computation to an offline phase, before the inputs
are known. This can be generalized from OT to VOLE and other useful instances of non-interactive
secure computation (NISC) [86], simultaneously inheriting the silent preprocessing feature from the
PCG and the minimal interaction feature from an underlying NISC protocol.

Actively Secure Setup. In the above passive setup procedure, a active receiver has no cheating
space; altered selection bits merely correspond to a different choice of noise coordinate α ′ ∈ [N].
However, a active sender may generate message pairs inconsistent with any correct PRF evaluation
tree, or use inconsistent inputs x across the t executions (in which case the outputs are not valid shares
of x · u for any single x). For example, by injecting errors into one of the two messages within an
OT message pair, the sender can effectively “guess” and learn a bit of α , and will go unnoticed if his
guess is correct.

We demonstrate that with small overhead, we can restrict a active sender to only such selective-
failure attacks. This is formalized via an ideal functionality where the adversarial sender can send a
guess range I ⊆ [N] for α , a “getting caught” predicate is tested as a function of the receiver’s true
input, and the functionality either aborts or delivers the output accordingly. We then show that paired

30.09.2019 D1.3 Special Purpose MPC Protocols 62



H2020-LEIT-ICT 731583 SODA Deliverable D1.3

LAN (10Gbps) times WAN (100Mbps) times WAN (10Mbps) times
n n n

Protocol Base type λ τ 107 106 105 104 107 106 105 104 107 106 105 104

This (SH) hybrid 128 4 2,441 208 76 67 2,726 513 422 425 2,756 518 454 422
IKNP base 128 4 268 125 94 91 13,728 1,850 493 459 128,954 13,332 1,756 445

This (SH) hybrid 128 1 7,990 533 130 100 8,252 808 451 422 8,291 815 467 422
IKNP base 128 1 573 157 108 98 15,622 2,030 613 341 129,011 13,285 1,672 429

This (Mal) hybrid 128 4 2,659 280 84 78 2,872 479 457 424 2,846 515 438 422
KOS base 128 4 333 121 110 111 13,722 1,933 589 426 129,052 13,391 1,804 536

This (Mal) hybrid 128 1 8,765 584 141 104 9,055 828 460 423 8,929 831 467 433
KOS base 128 1 674 170 113 106 15,741 2088 702 433 129,771 13,389 1,772 518

Figure 5.1: The running time in milliseconds of our implementation compared to [13] in both the
LAN (0ms latency) and WAN (40ms one-way latency) settings, with security parameter λ = 128. λ

is the computational security parameter. We set the scaling N/n to 2. τ denotes the number of threads.
Hybrid refers to doing 128 base OTs followed by IKNP to derive the total required base OTs.

with an interactive leakage notion for LPN, this suffices to give us PCG setup protocols for VOLE and
OT with active security.

Our basic actively secure protocols have 4 rounds, but this can be compressed to two rounds with
the Fiat-Shamir transform, in the random oracle model. Just as in the passive protocols, we can convert
the setup protocols into NISC protocols, this time under a slightly stronger variant of LPN with one
bit of adaptive leakage on the error vector, obtaining two-round OT extension with active security.

5.2 Performance Results

We now present the performance results from our implementation of the new silent OT extension pro-
tocol. For full details of the protocols and further optimizations we used, beyond the above informal
description, see the full paper [35].

5.2.1 Instantiating the Code and Parameters

The most costly part of our implementation is a matrix-vector multiplication with the public matrix
H used in the dual-LPN assumption. We optimize this by instantiating H using the parity-check
matrix of a quasi-cyclic code. Multiplication by H can then be done with polynomial arithmetic in
Z2[X ]/(Xn−1), for which we use the library bitpolymul [43]. Another optimization that improves
efficiency and reduces the seed size is to use a regular error distribution, where the error vector e ∈ FN

2
is the concatenation of t random unit vectors, each of length N/t. To choose the code parameters N,n
and the error weight t, we analyze security against the best known attacks, additionally accounting
for a

√
N speedup that can be obtained from the DOOM attack [124] when using quasi-cyclic codes.

As also observed in [80], we are not aware of any attacks that exploit regular errors and perform
significantly better than usual.

In the full paper, we provide more details on selecting parameters and describe some further
optimizations for the syndrome computation.

5.2.2 Results

We implement our passive and active secure protocols and report their performance in several dif-
ferent settings. The source code can be found at https://github.com/osu-crypto/libOTe. The

30.09.2019 D1.3 Special Purpose MPC Protocols 63

https://github.com/osu-crypto/libOTe


H2020-LEIT-ICT 731583 SODA Deliverable D1.3

Total Comm. (bytes) Comm./OT (bits)
n n

Protocol Base type 107 106 105 104 107 106 105 104

This (SH/Mal) hybrid 126,658 98,754 83,394 57,806 0.101 0.790 6.672 46.245
IKNP/KOS base 160,056,360 16,011,518 1,655,784 168,186 128.045 128.092 132.463 134.549

Figure 5.2: The communication overhead of our implementation compared to [85, 94], with N/n = 2
and λ = 4. See Figure 5.1.

benchmark was performed on a single AWS c4.4xLarge instance with network latency artificially lim-
ited to emulate a LAN or WAN settings. Specifically, we consider a LAN setting with bandwidth of
10Gbps and 0ms latency and two WAN settings with 100, 10 Mbps & 40ms one-way latency. We
compare with the passive OT extension protocol of Ishai et al. [85] (IKNP) and the active secure
protocol of [94] (KOS) as implemented by a state-of-the-art library. Both our implementations and
that of [85, 94] use the same three round active secure base OT protocol of Naor & Pinkas[108]. We
note that our protocols can be composed with a two round base OT protocol to give a two round OT
extension. In the WAN setting this optimization would reduce the running times by approximately
40ms for all protocols.

The functionality we realize is to produce n∈{104,105,106,107} uniformly random OTs of length
128 bits. One distinction between our protocol and [85, 94] is that the choice bits of the receiver are
uniformly chosen by our protocol, while [85, 94] allows the receiver to specify them. These random
OTs can then be de-randomized with additional communication.

Figure 5.1 contains the running time of our protocol. A fuller table, with alternative choices
of parameters (security parameter λ , scaling parameter N/n, method for computing the base OTs) is
available in the full version. The primary takeaway is that both of our protocols achieve extremely low
communication while the total running time remains competitive with or superior to KOS and IKNP.
We report running times with each party having 1 or 4 threads, along with a background IO thread. In
the LAN setting with sub-millisecond latency & 10Gbps we observe that the IKNP and KOS protocols
achieve significant performance, requiring just 0.26 or 0.33 seconds to compute 10 million OTs with a
single thread. While the computational cost of IKNP and KOS does outperform our implementation by
roughly one order of magnitude, it also requires between 1000 and 2000 times more communication.
This difference means that for more realistic network settings, such as 100Mbps, our implementation
achieves a faster running time. With 4 threads and a limit of 100Mbps our implementation is up to 5
times faster (counting total running time, including both local computation and communication costs)
and remains faster even for small n where our communication overheads are asymptotically closer
together.

For the constrained setting of 10Mbps our protocol truly stands out with a 47 times speedup
compared to IKNP with n = 107 and t = 4. We see a similar 46 times speedup in the active set-
ting compared to KOS. Moreover, when comparing between the across the different network settings
our protocol incurs minimal to no perform impact from decreasing bandwidth. For instance, with a
10Gbps connection our passive protocol processes n = 107 OTs in 2.4 seconds while with 1000 times
less bandwidth the protocol still just requires 2.8 seconds.

This scalability is explained in Figure 5.2 which contains the communication overhead of our pro-
tocol. A fuller table, with alternative choices of parameters (security parameter λ , scaling parameter
N/n, method for computing the base OTs) is available in the full version. We parameterize our proto-
cols by the desired security level λ ∈ {80,128} and a tunable parameter s = N/n. The latter controls
a trade-off between the number of PPRF evaluations and length of the resulting vectors. To maintain

30.09.2019 D1.3 Special Purpose MPC Protocols 64



H2020-LEIT-ICT 731583 SODA Deliverable D1.3

security level of λ bits, increasing s results in fewer PPRF evaluations and less communication. How-
ever, it also increases the computational overhead. Our smallest running times were achieved with
s = 2. However, we also consider s = 4 which decreases our total communication from 126KB to
80KB for n = 107. In contrast, the IKNP protocol requires 160MB for the same security level. This
represents as much as a 2000 times reduction in communication. This low communication overhead
results in our protocol requiring as little as 0.038 bits per OT for n= 107 and λ = 80. In our worst case
of n = 104 our protocol still requires between 3 and 6 times less communication than IKNP. Another
compelling property of our protocol is that we incur near constant additive communication overhead
when comparing our active and passive protocols.

30.09.2019 D1.3 Special Purpose MPC Protocols 65



Bibliography

[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, and others. Ten-
sorFlow: Large-scale machine learning on heterogeneous systems, 2015. Software available
from tensorflow.org.

[2] Mark Abspoel, Niek J. Bouman, Berry Schoenmakers, and Niels de Vreede. Fast secure com-
parison for medium-sized integers and its application in binarized neural networks. In Mitsuru
Matsui, editor, CT-RSA 2019, volume 11405 of LNCS, pages 453–472. Springer, Heidelberg,
March 2019.

[3] Mark Abspoel, Ronald Cramer, Ivan Damgård, Daniel Escudero, and Chen Yuan. Efficient
information-theoretic secure multiparty computation over Z/pkZ via galois rings. Cryptology
ePrint Archive, Report 2019/872, 2019. https://eprint.iacr.org/2019/872.

[4] Carlos Aguilar Melchor, Nicolas Aragon, Slim Bettaieb, Loïc Bidoux, Olivier Blazy, Jean-
Christophe Deneuville, Philippe Gaborit, Edoardo Persichetti, and Gilles Zémor. Hamming
quasi-cyclic (HQC). 2019.

[5] Michael Alekhnovich. More on average case vs approximation complexity. In 44th FOCS,
pages 298–307. IEEE Computer Society Press, October 2003.

[6] Alexandra Institute. FRESCO - a FRamework for Efficient Secure COmputation. https:
//github.com/aicis/fresco.

[7] Nikolaos Alexopoulos, Aggelos Kiayias, Riivo Talviste, and Thomas Zacharias. MCMix:
Anonymous messaging via secure multiparty computation. In 26th USENIX Security Sym-
posium (USENIX Security 17), pages 1217–1234, Vancouver, BC, 2017. USENIX Association.

[8] Benny Applebaum, Ivan Damgård, Yuval Ishai, Michael Nielsen, and Lior Zichron. Secure
arithmetic computation with constant computational overhead. In Jonathan Katz and Hovav
Shacham, editors, CRYPTO 2017, Part I, volume 10401 of LNCS, pages 223–254. Springer,
Heidelberg, August 2017.

[9] Nicolas Aragon, Paulo Barreto, Slim Bettaieb, Loïc Bidoux, Olivier Blazy, Jean-Christophe
Deneuville, Philippe Gaborit, Shay Gueron, Tim Guneysu, Carlos Aguilar Melchor, et al. Bike:
Bit flipping key encapsulation. 2019.

[10] Toshinori Araki, Assi Barak, Jun Furukawa, Tamar Lichter, Yehuda Lindell, Ariel Nof, Kazuma
Ohara, Adi Watzman, and Or Weinstein. Optimized honest-majority MPC for malicious adver-
saries - breaking the 1 billion-gate per second barrier. In 2017 IEEE Symposium on Security
and Privacy, pages 843–862. IEEE Computer Society Press, May 2017.

66

https://eprint.iacr.org/2019/872
https://github.com/aicis/fresco
https://github.com/aicis/fresco


H2020-LEIT-ICT 731583 SODA Deliverable D1.3

[11] Toshinori Araki, Jun Furukawa, Yehuda Lindell, Ariel Nof, and Kazuma Ohara. High-
throughput semi-honest secure three-party computation with an honest majority. In Edgar R.
Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and Shai Halevi, edi-
tors, ACM CCS 2016, pages 805–817. ACM Press, October 2016.

[12] David W. Archer, Dan Bogdanov, Yehuda Lindell, Liina Kamm, Kurt Nielsen, Jakob Illeborg
Pagter, Nigel P. Smart, and Rebecca N. Wright. From keys to databases - real-world applica-
tions of secure multi-party computation. The Computer Journal, 61(12):1749–1771, 2018.

[13] Gilad Asharov, Yehuda Lindell, Thomas Schneider, and Michael Zohner. More efficient obliv-
ious transfer and extensions for faster secure computation. In Ahmad-Reza Sadeghi, Virgil D.
Gligor, and Moti Yung, editors, ACM CCS 2013, pages 535–548. ACM Press, November 2013.

[14] J. Bar-Ilan and D. Beaver. Non-cryptographic fault-tolerant computing in constant number of
rounds of interaction. In Proc. 8th Symp. on Princip. of Distr. Comp., pages 201–209, NY,
1989. ACM.

[15] Assi Barak, Daniel Escudero, Anders Dalskov, and Marcel Keller. Secure evaluation of
quantized neural networks. Cryptology ePrint Archive, Report 2019/131, 2019. https:
//eprint.iacr.org/2019/131.

[16] Erwin H. Bareiss. Sylvester’s identity and multistep integer-preserving gaussian elimination.
Mathematics of Computation, 22(103):565–578, 1968.

[17] Mauro Barni, Claudio Orlandi, and Alessandro Piva. A privacy-preserving protocol for neural-
network-based computation. In Proceedings of the 8th workshop on Multimedia and security,
pages 146–151. ACM, 2006.

[18] Donald Beaver, Silvio Micali, and Phillip Rogaway. The round complexity of secure protocols
(extended abstract). In 22nd ACM STOC, pages 503–513. ACM Press, May 1990.

[19] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for non-cryptographic
fault-tolerant distributed computation. In Proc. 20th Symposium on Theory of Computing
(STOC ’88), pages 1–10, New York, 1988. ACM.

[20] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In 20th ACM STOC,
pages 1–10. ACM Press, May 1988.

[21] Rikke Bendlin, Ivan Damgård, Claudio Orlandi, and Sarah Zakarias. Semi-homomorphic en-
cryption and multiparty computation. In Kenneth G. Paterson, editor, EUROCRYPT 2011,
volume 6632 of LNCS, pages 169–188. Springer, Heidelberg, May 2011.

[22] Frank Blom, Niek J. Bouman, Berry Schoenmakers, and Niels de Vreede. Efficient secure
ridge regression from randomized gaussian elimination. Cryptology ePrint Archive, Report
2019/773, 2019. https://eprint.iacr.org/2019/773.

[23] Avrim Blum, Merrick L. Furst, Michael J. Kearns, and Richard J. Lipton. Cryptographic primi-
tives based on hard learning problems. In Advances in Cryptology - CRYPTO ’93, 13th Annual
International Cryptology Conference, Santa Barbara, California, USA, August 22-26, 1993,
Proceedings, pages 278–291, 1993.

30.09.2019 D1.3 Special Purpose MPC Protocols 67

https://eprint.iacr.org/2019/131
https://eprint.iacr.org/2019/131
https://eprint.iacr.org/2019/773


H2020-LEIT-ICT 731583 SODA Deliverable D1.3

[24] Dan Bogdanov. Sharemind: programmable secure computations with practical applications.
PhD thesis, University of Tartu, 2013.

[25] Dan Bogdanov, Marko Jõemets, Sander Siim, and Meril Vaht. How the estonian tax and cus-
toms board evaluated a tax fraud detection system based on secure multi-party computation. In
Rainer Böhme and Tatsuaki Okamoto, editors, FC 2015, volume 8975 of LNCS, pages 227–
234. Springer, Heidelberg, January 2015.

[26] Dan Bogdanov, Liina Kamm, Baldur Kubo, Reimo Rebane, Ville Sokk, and Riivo Talviste.
Students and Taxes: a Privacy-Preserving Study Using Secure Computation. PoPETs,
2016(3):117–135, 2016.

[27] Dan Bogdanov, Sven Laur, and Jan Willemson. Sharemind: A framework for fast privacy-
preserving computations. In Sushil Jajodia and Javier López, editors, ESORICS 2008, volume
5283 of LNCS, pages 192–206. Springer, Heidelberg, October 2008.

[28] Dan Bogdanov, Margus Niitsoo, Tomas Toft, and Jan Willemson. High-performance se-
cure multi-party computation for data mining applications. Int. J. Inf. Secur., 11(6):403–418,
November 2012.

[29] Dan Bogdanov, Riivo Talviste, and Jan Willemson. Deploying secure multi-party computation
for financial data analysis - (short paper). In Angelos D. Keromytis, editor, FC 2012, volume
7397 of LNCS, pages 57–64. Springer, Heidelberg, February / March 2012.

[30] Peter Bogetoft, Dan Lund Christensen, Ivan Damgård, Martin Geisler, Thomas Jakobsen,
Mikkel Krøigaard, Janus Dam Nielsen, Jesper Buus Nielsen, Kurt Nielsen, Jakob Pagter,
Michael I. Schwartzbach, and Tomas Toft. Secure multiparty computation goes live. In
Roger Dingledine and Philippe Golle, editors, FC 2009, volume 5628 of LNCS, pages 325–
343. Springer, Heidelberg, February 2009.

[31] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner, Beat Flepp, Pra-
soon Goyal, Lawrence D. Jackel, Mathew Monfort, Urs Muller, Jiakai Zhang, Xin Zhang, Jake
Zhao, and Karol Zieba. End to end learning for self-driving cars. CoRR, abs/1604.07316, 2016.

[32] Dan Boneh and Brent Waters. Constrained pseudorandom functions and their applications.
In Kazue Sako and Palash Sarkar, editors, ASIACRYPT 2013, Part II, volume 8270 of LNCS,
pages 280–300. Springer, Heidelberg, December 2013.

[33] Niek J. Bouman and Niels de Vreede. A practical approach to the secure computation of the
Moore-Penrose pseudoinverse over the rationals. Cryptology ePrint Archive, Report 2019/470,
2019.

[34] Elette Boyle, Geoffroy Couteau, Niv Gilboa, and Yuval Ishai. Compressing vector OLE. In
David Lie, Mohammad Mannan, Michael Backes, and XiaoFeng Wang, editors, ACM CCS
2018, pages 896–912. ACM Press, October 2018.

[35] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, Peter Rindal, and Peter
Scholl. Efficient two-round ot extension and silent non-interactive secure computation. In ACM
CCS, 2019.

30.09.2019 D1.3 Special Purpose MPC Protocols 68



H2020-LEIT-ICT 731583 SODA Deliverable D1.3

[36] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, and Peter Scholl. Efficient
pseudorandom correlation generators: Silent OT extension and more. In Alexandra Boldyreva
and Daniele Micciancio, editors, CRYPTO 2019, Part III, volume 11694 of LNCS, pages 489–
518. Springer, Heidelberg, August 2019.

[37] Elette Boyle, Niv Gilboa, and Yuval Ishai. Function secret sharing: Improvements and exten-
sions. In Edgar R. Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and
Shai Halevi, editors, ACM CCS 2016, pages 1292–1303. ACM Press, October 2016.

[38] Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Functional signatures and pseudorandom
functions. In Hugo Krawczyk, editor, PKC 2014, volume 8383 of LNCS, pages 501–519.
Springer, Heidelberg, March 2014.

[39] Dario Catalano, Mario Di Raimondo, Dario Fiore, and Irene Giacomelli. Monza: Fast ma-
liciously secure two party computation on z2k . Cryptology ePrint Archive, Report 2019/211,
2019. https://eprint.iacr.org/2019/211.

[40] Octavian Catrina and Sebastiaan de Hoogh. Improved primitives for secure multiparty integer
computation. In Juan A. Garay and Roberto De Prisco, editors, SCN 10, volume 6280 of LNCS,
pages 182–199. Springer, Heidelberg, September 2010.

[41] Hervé Chabanne, Amaury de Wargny, Jonathan Milgram, Constance Morel, and Emmanuel
Prouff. Privacy-preserving classification on deep neural network. Cryptology ePrint Archive,
Report 2017/035, 2017. http://eprint.iacr.org/2017/035.

[42] Harsh Chaudhari, Ashish Choudhury, Arpita Patra, and Ajith Suresh. Astra: High through-
put 3pc over rings with application to secure prediction. Cryptology ePrint Archive, Report
2019/429, 2019. https://eprint.iacr.org/2019/429.

[43] Ming-Shing Chen, Chen-Mou Cheng, Po-Chun Kuo, Wen-Ding Li, and Bo-Yin Yang. Multi-
plying boolean polynomials with frobenius partitions in additive fast fourier transform. CoRR,
abs/1803.11301, 2018.

[44] Koji Chida, Daniel Genkin, Koki Hamada, Dai Ikarashi, Ryo Kikuchi, Yehuda Lindell, and
Ariel Nof. Fast large-scale honest-majority MPC for malicious adversaries. In Hovav Shacham
and Alexandra Boldyreva, editors, CRYPTO 2018, Part III, volume 10993 of LNCS, pages
34–64. Springer, Heidelberg, August 2018.

[45] M. De Cock, R. Dowsley, C. Horst, R. Katti, A. Nascimento, W. Poon, and S. Truex. Efficient
and private scoring of decision trees, support vector machines and logistic regression models
based on pre-computation. IEEE Transactions on Dependable and Secure Computing, pages
1–1, 2018.

[46] Ronald Cramer and Ivan Damgård. Secure distributed linear algebra in a constant number of
rounds. In Proc. CRYPTO 2001, Santa Barbara, USA, pages 119–136. Springer, 2001.

[47] Ronald Cramer, Ivan Damgård, Daniel Escudero, Peter Scholl, and Chaoping Xing. SPD Z2k :
Efficient MPC mod 2k for dishonest majority. In Hovav Shacham and Alexandra Boldyreva,
editors, CRYPTO 2018, Part II, volume 10992 of LNCS, pages 769–798. Springer, Heidelberg,
August 2018.

30.09.2019 D1.3 Special Purpose MPC Protocols 69

https://eprint.iacr.org/2019/211
http://eprint.iacr.org/2017/035
https://eprint.iacr.org/2019/429


H2020-LEIT-ICT 731583 SODA Deliverable D1.3

[48] Ronald Cramer, Ivan Damgård, and Yuval Ishai. Share conversion, pseudorandom secret-
sharing and applications to secure computation. In Joe Kilian, editor, TCC 2005, volume 3378
of LNCS, pages 342–362. Springer, Heidelberg, February 2005.

[49] Ivan Damgård, Kasper Damgård, Kurt Nielsen, Peter Sebastian Nordholt, and Tomas Toft.
Confidential benchmarking based on multiparty computation. In Jens Grossklags and Bart Pre-
neel, editors, FC 2016, volume 9603 of LNCS, pages 169–187. Springer, Heidelberg, February
2016.

[50] Ivan Damgård, Daniel Escudero, Tore Kasper Frederiksen, Marcel Keller, Peter Scholl, and
Nikolaj Volgushev. New primitives for actively-secure mpc over rings with applications to
private machine learning. In IEEE Security & Privacy, 2019.

[51] Ivan Damgård, Matthias Fitzi, Eike Kiltz, Jesper Buus Nielsen, and Tomas Toft. Uncondition-
ally secure constant-rounds multi-party computation for equality, comparison, bits and expo-
nentiation. In Shai Halevi and Tal Rabin, editors, TCC 2006, volume 3876 of LNCS, pages
285–304. Springer, Heidelberg, March 2006.

[52] Ivan Damgård, Martin Geisler, Mikkel Krøigaard, and Jesper Buus Nielsen. Asynchronous
multiparty computation: Theory and implementation. In Stanislaw Jarecki and Gene Tsudik,
editors, PKC 2009, volume 5443 of LNCS, pages 160–179. Springer, Heidelberg, March 2009.

[53] Ivan Damgård and Marcel Keller. Secure multiparty AES. In Radu Sion, editor, FC 2010,
volume 6052 of LNCS, pages 367–374. Springer, Heidelberg, January 2010.

[54] Ivan Damgård, Marcel Keller, Enrique Larraia, Valerio Pastro, Peter Scholl, and Nigel P. Smart.
Practical covertly secure MPC for dishonest majority - or: Breaking the SPDZ limits. In Jason
Crampton, Sushil Jajodia, and Keith Mayes, editors, ESORICS 2013, volume 8134 of LNCS,
pages 1–18. Springer, Heidelberg, September 2013.

[55] Ivan Damgård, Claudio Orlandi, and Mark Simkin. Yet another compiler for active security
or: Efficient MPC over arbitrary rings. In Hovav Shacham and Alexandra Boldyreva, editors,
CRYPTO 2018, Part II, volume 10992 of LNCS, pages 799–829. Springer, Heidelberg, August
2018.

[56] Ivan Damgård, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multiparty computation
from somewhat homomorphic encryption. In Reihaneh Safavi-Naini and Ran Canetti, editors,
CRYPTO 2012, volume 7417 of LNCS, pages 643–662. Springer, Heidelberg, August 2012.

[57] Ivan Damgård and Rasmus Winther Zakarias. Fast oblivious AES A dedicated application of
the MiniMac protocol. In David Pointcheval, Abderrahmane Nitaj, and Tajjeeddine Rachidi,
editors, AFRICACRYPT 16, volume 9646 of LNCS, pages 245–264. Springer, Heidelberg, April
2016.

[58] Daniel Demmler, Thomas Schneider, and Michael Zohner. ABY - A framework for efficient
mixed-protocol secure two-party computation. In NDSS 2015. The Internet Society, February
2015.

[59] Ghada Dessouky, Farinaz Koushanfar, Ahmad-Reza Sadeghi, Thomas Schneider, Shaza
Zeitouni, and Michael Zohner. Pushing the communication barrier in secure computation using
lookup tables. In NDSS 2017. The Internet Society, February / March 2017.

30.09.2019 D1.3 Special Purpose MPC Protocols 70



H2020-LEIT-ICT 731583 SODA Deliverable D1.3

[60] Jack Doerner and abhi shelat. Scaling ORAM for secure computation. In Bhavani M. Thurais-
ingham, David Evans, Tal Malkin, and Dongyan Xu, editors, ACM CCS 2017, pages 523–535.
ACM Press, October / November 2017.

[61] Nico Döttling, Satrajit Ghosh, Jesper Buus Nielsen, Tobias Nilges, and Roberto Trifiletti. Tiny-
OLE: Efficient actively secure two-party computation from oblivious linear function evaluation.
In Bhavani M. Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu, editors, ACM CCS
2017, pages 2263–2276. ACM Press, October / November 2017.

[62] Wenliang Du, Yunghsiang S Han, and Shigang Chen. Privacy-preserving multivariate statistical
analysis: Linear regression and classification. In Proceedings of the 2004 SIAM International
Conference on Data Mining, pages 222–233. SIAM, 2004.

[63] Dheeru Dua and Casey Graff. UCI machine learning repository, 2019.

[64] Hendrik Eerikson, Marcel Keller, Claudio Orlandi, Pille Pullonen, Joonas Puura, and Mark
Simkin. Use your brain! arithmetic 3pc for any modulus with active security. Cryptology
ePrint Archive, Report 2019/164, 2019. https://eprint.iacr.org/2019/164.

[65] Hendrik Eerikson, Claudio Orlandi, Pille Pullonen, Joonas Puura, and Mark Simkin. Use your
brain! arithmetic 3pc for any modulus with active security. IACR Cryptology ePrint Archive,
2019:164, 2019.

[66] Andre Esteva, Brett Kuprel, Roberto A Novoa, Justin Ko, Susan M Swetter, Helen M Blau, and
Sebastian Thrun. Dermatologist-level classification of skin cancer with deep neural networks.
Nature, 542(7639):115, 2017.

[67] Matthias Fitzi, Nicolas Gisin, Ueli M. Maurer, and Oliver von Rotz. Unconditional byzantine
agreement and multi-party computation secure against dishonest minorities from scratch. In
Lars R. Knudsen, editor, EUROCRYPT 2002, volume 2332 of LNCS, pages 482–501. Springer,
Heidelberg, April / May 2002.

[68] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. The elements of statistical learning,
volume 1. Springer series in statistics New York, 2001.

[69] Jun Furukawa, Yehuda Lindell, Ariel Nof, and Or Weinstein. High-throughput secure three-
party computation for malicious adversaries and an honest majority. In Jean-Sébastien Coron
and Jesper Buus Nielsen, editors, EUROCRYPT 2017, Part II, volume 10211 of LNCS, pages
225–255. Springer, Heidelberg, April / May 2017.

[70] Sanjam Garg, Mohammad Mahmoody, Daniel Masny, and Izaak Meckler. On the round com-
plexity of OT extension. In Hovav Shacham and Alexandra Boldyreva, editors, CRYPTO 2018,
Part III, volume 10993 of LNCS, pages 545–574. Springer, Heidelberg, August 2018.

[71] Adrià Gascón, Phillipp Schoppmann, Borja Balle, Mariana Raykova, Jack Doerner, Samee
Zahur, and David Evans. Privacy-preserving distributed linear regression on high-dimensional
data. Proceedings on Privacy Enhancing Technologies, 2017(4):345–364, 2017.

[72] M. Geisler. Cryptographic Protocols: Theory and Implementation. PhD thesis, Department of
Computer Science, University of Aarhus, Denmark, February 2010. viff.dk.

30.09.2019 D1.3 Special Purpose MPC Protocols 71

https://eprint.iacr.org/2019/164
http://viff.dk


H2020-LEIT-ICT 731583 SODA Deliverable D1.3

[73] Daniel Genkin, Yuval Ishai, Manoj Prabhakaran, Amit Sahai, and Eran Tromer. Circuits re-
silient to additive attacks with applications to secure computation. In David B. Shmoys, editor,
46th ACM STOC, pages 495–504. ACM Press, May / June 2014.

[74] R. Gennaro, M. O. Rabin, and T. Rabin. Simplified VSS and fast-track multiparty computations
with applications to threshold cryptography. In 17th annual ACM symposium on Principles of
Distributed Computing (PODC ’98), pages 101–111, New York, 1998. ACM.

[75] Irene Giacomelli, Somesh Jha, Marc Joye, C. David Page, and Kyonghwan Yoon. Privacy-
preserving ridge regression with only linearly-homomorphic encryption. In Bart Preneel and
Frederik Vercauteren, editors, Applied Cryptography and Network Security - 16th International
Conference, ACNS 2018, Leuven, Belgium, July 2-4, 2018, Proceedings, volume 10892 of
Lecture Notes in Computer Science, pages 243–261. Springer, 2018.

[76] Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin E. Lauter, Michael Naehrig, and John
Wernsing. Cryptonets: Applying neural networks to encrypted data with high throughput and
accuracy. In Proceedings of the 33nd International Conference on Machine Learning, ICML
2016, New York City, NY, USA, June 19-24, 2016, pages 201–210, 2016.

[77] Niv Gilboa and Yuval Ishai. Distributed point functions and their applications. In Phong Q.
Nguyen and Elisabeth Oswald, editors, EUROCRYPT 2014, volume 8441 of LNCS, pages 640–
658. Springer, Heidelberg, May 2014.

[78] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or A com-
pleteness theorem for protocols with honest majority. In Alfred Aho, editor, 19th ACM STOC,
pages 218–229. ACM Press, May 1987.

[79] Rob Hall, Stephen E. Fienberg, and Yuval Nardi. Secure multiple linear regression based on
homomorphic encryption, 2011.

[80] Carmit Hazay, Emmanuela Orsini, Peter Scholl, and Eduardo Soria-Vazquez. TinyKeys: A new
approach to efficient multi-party computation. In Hovav Shacham and Alexandra Boldyreva,
editors, CRYPTO 2018, Part III, volume 10993 of LNCS, pages 3–33. Springer, Heidelberg,
August 2018.

[81] Carmit Hazay, Peter Scholl, and Eduardo Soria-Vazquez. Low cost constant round MPC com-
bining BMR and oblivious transfer. In Tsuyoshi Takagi and Thomas Peyrin, editors, ASI-
ACRYPT 2017, Part I, volume 10624 of LNCS, pages 598–628. Springer, Heidelberg, Decem-
ber 2017.

[82] Yan Huang, David Evans, and Jonathan Katz. Private set intersection: Are garbled circuits
better than custom protocols? In NDSS 2012. The Internet Society, February 2012.

[83] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Bi-
narized neural networks. In Advances in neural information processing systems, pages 4107–
4115, 2016.

[84] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. In Proceedings of the 32nd International Conference on
Machine Learning, ICML 2015, Lille, France, 6-11 July 2015, pages 448–456, 2015.

30.09.2019 D1.3 Special Purpose MPC Protocols 72



H2020-LEIT-ICT 731583 SODA Deliverable D1.3

[85] Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extending oblivious transfers effi-
ciently. In Dan Boneh, editor, CRYPTO 2003, volume 2729 of LNCS, pages 145–161. Springer,
Heidelberg, August 2003.

[86] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, Manoj Prabhakaran, and Amit Sahai. Effi-
cient non-interactive secure computation. In Kenneth G. Paterson, editor, EUROCRYPT 2011,
volume 6632 of LNCS, pages 406–425. Springer, Heidelberg, May 2011.

[87] Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Secure arithmetic computation with no
honest majority. In Omer Reingold, editor, TCC 2009, volume 5444 of LNCS, pages 294–314.
Springer, Heidelberg, March 2009.

[88] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew G.
Howard, Hartwig Adam, and Dmitry Kalenichenko. Quantization and training of neural net-
works for efficient integer-arithmetic-only inference. CoRR, abs/1712.05877, 2017.

[89] Thomas P. Jakobsen, Jesper Buus Nielsen, and Claudio Orlandi. A framework for outsourcing
of secure computation. In Proceedings of the 6th edition of the ACM Workshop on Cloud
Computing Security, CCSW ’14, Scottsdale, Arizona, USA, November 7, 2014, pages 81–92,
2014.

[90] Marc Joye and Fariborz Salehi. Private yet efficient decision tree evaluation. In Florian Ker-
schbaum and Stefano Paraboschi, editors, Data and Applications Security and Privacy XXXII
- IFIP WG, volume 10980 of Lecture Notes in Computer Science, pages 243–259. Springer,
2018.

[91] Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha Chandrakasan. GAZELLE: A low la-
tency framework for secure neural network inference. In William Enck and Adrienne Porter
Felt, editors, USENIX Security 2018, pages 1651–1669. USENIX Association, August 2018.

[92] Jonathan Katz, Samuel Ranellucci, Mike Rosulek, and Xiao Wang. Optimizing authenticated
garbling for faster secure two-party computation. In Hovav Shacham and Alexandra Boldyreva,
editors, CRYPTO 2018, Part III, volume 10993 of LNCS, pages 365–391. Springer, Heidelberg,
August 2018.

[93] Marcel Keller, Emmanuela Orsini, Dragos Rotaru, Peter Scholl, Eduardo Soria-Vazquez, and
Srinivas Vivek. Faster secure multi-party computation of AES and DES using lookup tables.
In Dieter Gollmann, Atsuko Miyaji, and Hiroaki Kikuchi, editors, ACNS 17, volume 10355 of
LNCS, pages 229–249. Springer, Heidelberg, July 2017.

[94] Marcel Keller, Emmanuela Orsini, and Peter Scholl. Actively secure OT extension with optimal
overhead. In Rosario Gennaro and Matthew J. B. Robshaw, editors, CRYPTO 2015, Part I,
volume 9215 of LNCS, pages 724–741. Springer, Heidelberg, August 2015.

[95] Marcel Keller, Emmanuela Orsini, and Peter Scholl. MASCOT: Faster malicious arithmetic
secure computation with oblivious transfer. In Edgar R. Weippl, Stefan Katzenbeisser, Christo-
pher Kruegel, Andrew C. Myers, and Shai Halevi, editors, ACM CCS 2016, pages 830–842.
ACM Press, October 2016.

[96] Marcel Keller, Valerio Pastro, and Dragos Rotaru. Overdrive: Making SPDZ great again. In
Jesper Buus Nielsen and Vincent Rijmen, editors, EUROCRYPT 2018, Part III, volume 10822
of LNCS, pages 158–189. Springer, Heidelberg, April / May 2018.

30.09.2019 D1.3 Special Purpose MPC Protocols 73



H2020-LEIT-ICT 731583 SODA Deliverable D1.3

[97] Aggelos Kiayias, Stavros Papadopoulos, Nikos Triandopoulos, and Thomas Zacharias. Dele-
gatable pseudorandom functions and applications. In Ahmad-Reza Sadeghi, Virgil D. Gligor,
and Moti Yung, editors, ACM CCS 2013, pages 669–684. ACM Press, November 2013.

[98] Vladimir Kolesnikov and Ranjit Kumaresan. Improved OT extension for transferring short
secrets. In Ran Canetti and Juan A. Garay, editors, CRYPTO 2013, Part II, volume 8043 of
LNCS, pages 54–70. Springer, Heidelberg, August 2013.

[99] Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images,
2009. https://www.cs.toronto.edu/~kriz/cifar.html.

[100] Steve Lawrence, C Lee Giles, Ah Chung Tsoi, and Andrew Back. Face recognition: A con-
volutional neural network approach. Neural Networks, IEEE Transactions on, 8:98 – 113, 02
1997.

[101] Yehuda Lindell and Ariel Nof. A framework for constructing fast MPC over arithmetic cir-
cuits with malicious adversaries and an honest-majority. In Bhavani M. Thuraisingham, David
Evans, Tal Malkin, and Dongyan Xu, editors, ACM CCS 2017, pages 259–276. ACM Press,
October / November 2017.

[102] Helger Lipmaa and Tomas Toft. Secure equality and greater-than tests with sublinear online
complexity. In Fedor V. Fomin, Rusins Freivalds, Marta Z. Kwiatkowska, and David Peleg,
editors, ICALP 2013, Part II, volume 7966 of LNCS, pages 645–656. Springer, Heidelberg,
July 2013.

[103] Jian Liu, Mika Juuti, Yao Lu, and N. Asokan. Oblivious neural network predictions via Min-
iONN transformations. In Bhavani M. Thuraisingham, David Evans, Tal Malkin, and Dongyan
Xu, editors, ACM CCS 2017, pages 619–631. ACM Press, October / November 2017.

[104] Eleftheria Makri, Dragos Rotaru, Nigel P. Smart, and Frederik Vercauteren. EPIC: Efficient
private image classification (or: Learning from the masters). In Mitsuru Matsui, editor, CT-
RSA 2019, volume 11405 of LNCS, pages 473–492. Springer, Heidelberg, March 2019.

[105] Payman Mohassel and Peter Rindal. ABY3: A mixed protocol framework for machine learning.
In David Lie, Mohammad Mannan, Michael Backes, and XiaoFeng Wang, editors, ACM CCS
2018, pages 35–52. ACM Press, October 2018.

[106] Payman Mohassel and Yupeng Zhang. SecureML: A system for scalable privacy-preserving
machine learning. In 2017 IEEE Symposium on Security and Privacy, pages 19–38. IEEE
Computer Society Press, May 2017.

[107] N1 Analytics. MP-SPDZ - Versatile framework for multi-party computation. https://
github.com/n1analytics/MP-SPDZ.

[108] Moni Naor and Benny Pinkas. Computationally secure oblivious transfer. Journal of Cryptol-
ogy, 18(1):1–35, January 2005.

[109] Jesper Buus Nielsen, Peter Sebastian Nordholt, Claudio Orlandi, and Sai Sheshank Burra. A
new approach to practical active-secure two-party computation. In Reihaneh Safavi-Naini and
Ran Canetti, editors, CRYPTO 2012, volume 7417 of LNCS, pages 681–700. Springer, Heidel-
berg, August 2012.

30.09.2019 D1.3 Special Purpose MPC Protocols 74

https://www.cs.toronto.edu/~kriz/cifar.html
https://github.com/n1analytics/MP-SPDZ
https://github.com/n1analytics/MP-SPDZ


H2020-LEIT-ICT 731583 SODA Deliverable D1.3

[110] Valeria Nikolaenko, Udi Weinsberg, Stratis Ioannidis, Marc Joye, Dan Boneh, and Nina Taft.
Privacy-preserving ridge regression on hundreds of millions of records. In Proceedings of the
2013 IEEE Symposium on Security and Privacy, SP ’13, pages 334–348, Washington, DC,
USA, 2013. IEEE Computer Society.

[111] Takashi Nishide and Kazuo Ohta. Multiparty computation for interval, equality, and compar-
ison without bit-decomposition protocol. In Tatsuaki Okamoto and Xiaoyun Wang, editors,
PKC 2007, volume 4450 of LNCS, pages 343–360. Springer, Heidelberg, April 2007.

[112] Claudio Orlandi, Alessandro Piva, and Mauro Barni. Oblivious neural network computing via
homomorphic encryption. EURASIP Journal on Information Security, 2007(1):037343, 2007.

[113] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. 2017.

[114] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pret-
tenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Per-
rot, and E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning
Research, 12:2825–2830, 2011.

[115] Martin Pettai and Peeter Laud. Automatic proofs of privacy of secure multi-party computation
protocols against active adversaries. In Cédric Fournet, Michael W. Hicks, and Luca Viganò,
editors, IEEE Computer Security Foundations Symposium, pages 75–89. IEEE Computer So-
ciety, 2015.

[116] Benny Pinkas, Thomas Schneider, Gil Segev, and Michael Zohner. Phasing: Private set inter-
section using permutation-based hashing. In Jaeyeon Jung and Thorsten Holz, editors, USENIX
Security 2015, pages 515–530. USENIX Association, August 2015.

[117] Benny Pinkas, Thomas Schneider, Oleksandr Tkachenko, and Avishay Yanai. Efficient circuit-
based psi with linear communication. 2019. https://eprint.iacr.org/2019/241.

[118] Ariadna Quattoni and Antonio Torralba. Recognizing indoor scenes. In IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, pages 413–420. IEEE Computer
Society, 2009.

[119] Tal Rabin and Michael Ben-Or. Verifiable secret sharing and multiparty protocols with honest
majority (extended abstract). In 21st ACM STOC, pages 73–85. ACM Press, May 1989.

[120] M. Sadegh Riazi, Mohammad Samragh, Hao Chen, Kim Laine, Kristin Lauter, and Farinaz
Koushanfar. Xonn: Xnor-based oblivious deep neural network inference. Cryptology ePrint
Archive, Report 2019/171, 2019. https://eprint.iacr.org/2019/171.

[121] M. Sadegh Riazi, Christian Weinert, Oleksandr Tkachenko, Ebrahim M. Songhori, Thomas
Schneider, and Farinaz Koushanfar. Chameleon: A hybrid secure computation framework for
machine learning applications. In Jong Kim, Gail-Joon Ahn, Seungjoo Kim, Yongdae Kim,
Javier López, and Taesoo Kim, editors, ASIACCS 18, pages 707–721. ACM Press, April 2018.

[122] Bita Darvish Rouhani, M. Sadegh Riazi, and Farinaz Koushanfar. Deepsecure: scalable
provably-secure deep learning. In Proceedings of the 55th Annual Design Automation Con-
ference, DAC 2018, San Francisco, CA, USA, June 24-29, 2018, pages 2:1–2:6, 2018.

30.09.2019 D1.3 Special Purpose MPC Protocols 75

https://eprint.iacr.org/2019/241
https://eprint.iacr.org/2019/171


H2020-LEIT-ICT 731583 SODA Deliverable D1.3

[123] Berry Schoenmakers. MPyC: Secure multiparty computation in Python. GitHub, May 2018.
github.com/lschoe/mpyc.

[124] Nicolas Sendrier. Decoding one out of many. In Bo-Yin Yang, editor, Post-Quantum Cryp-
tography - 4th International Workshop, PQCrypto 2011, pages 51–67. Springer, Heidelberg,
November / December 2011.

[125] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van
Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanc-
tot, et al. Mastering the game of go with deep neural networks and tree search. nature,
529(7587):484, 2016.

[126] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, and Zbigniew Wojna.
Rethinking the inception architecture for computer vision. In IEEE Conference on Computer
Vision and Pattern Recognition, pages 2818–2826. IEEE Computer Society, 2016.

[127] University of Bristol. SPDZ-2. https://github.com/bristolcrypto/SPDZ-2.

[128] Sameer Wagh, Divya Gupta, and Nishanth Chandran. SecureNN: Efficient and private neural
network training. Cryptology ePrint Archive, Report 2018/442, 2018. https://eprint.
iacr.org/2018/442.

[129] Xiao Wang, Samuel Ranellucci, and Jonathan Katz. Authenticated garbling and efficient
maliciously secure two-party computation. In Bhavani M. Thuraisingham, David Evans,
Tal Malkin, and Dongyan Xu, editors, ACM CCS 2017, pages 21–37. ACM Press, Octo-
ber / November 2017.

[130] Xiao Wang, Samuel Ranellucci, and Jonathan Katz. Global-scale secure multiparty computa-
tion. In Bhavani M. Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu, editors, ACM
CCS 2017, pages 39–56. ACM Press, October / November 2017.

[131] Wikipedia. Lee sedol. https://en.wikipedia.org/wiki/Lee_Sedol. Accessed: 19-12-
2018.

[132] David J. Wu, Tony Feng, Michael Naehrig, and Kristin E. Lauter. Privately evaluating decision
trees and random forests. PoPETs, 2016(4):335–355, 2016.

30.09.2019 D1.3 Special Purpose MPC Protocols 76

https://github.com/lschoe/mpyc
https://github.com/bristolcrypto/SPDZ-2
https://eprint.iacr.org/2018/442
https://eprint.iacr.org/2018/442
https://en.wikipedia.org/wiki/Lee_Sedol

	Applications of MPC Over Rings for Dishonest Majority
	Introduction
	Computational Models in Multi-Party Computation
	The SPDZ2k Protocol
	Contributions
	Overview of our Techniques
	Related Work

	Preliminaries
	Notation
	Background on SPDZ2k Shares and Core Protocols
	Preprocessing Material in SPDZ2k

	Converting Between Binary and Arithmetic Sharings
	Binary sharings
	Efficient binary triple generation
	Arithmetic to Binary
	Binary to Arithmetic

	Applications
	Decision Trees
	Support Vector Machines (SVMs)

	Performance Evaluation
	Online Phase
	Offline Phase
	Applications

	Conclusions

	Improved MPC Over Rings for Honest Majority
	Introduction
	Auxiliary Ideal Functionalities
	Extension of the Compiler by Damgård et al.
	A New Compiler for Protocols with Weak Privacy

	Implementation and Evaluation
	Communication
	Benchmarks


	Secure Evaluation of Quantized Neural Networks
	Introduction
	Related work
	Quantization in prior work

	Quantization
	TFLite Quantization

	Protocol
	Protocol details

	Experimental Results
	Conclusion

	Efficient Secure Ridge Regression from Randomized Gaussian Elimination
	Introduction
	Approach
	Roadmap

	Preliminaries
	Ridge Regression
	MPC Setting
	Solving Systems of Linear Equations
	Secure Linear Algebra
	Secure Determinant
	Secure Matrix Inversion
	Secure Linear Solver

	Secure Ridge Regression
	Performance Evaluation
	Concluding Remarks

	Efficient Secure Computation with Silent Preprocessing
	Introduction
	Our Contribution
	Technical Overview

	Performance Results
	Instantiating the Code and Parameters
	Results


	Bibliography

