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Opportunity & problem: joint data analytics

Unlock value of joint data analytics by addressing the privacy — utility trade-off
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Approach

Privacy-Preserving Data Mining
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Hiding sensitive Preventing data
data from processors leakage to end users
Perturbation  Anonymization Cryptography | Differential Association/classify-
‘ privacy cation rule hiding, ...
Multi-Party Trusted Fully Homomorphic
Computation Computing Encryption

SODA addresses the privacy-utility trade-off with Multi-Party Computation
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MPC 1 Secure Multi-Party Computation

jointly compute a function while keeping the (input) data private

animation source: Claudiorlandj Aarhus University
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Enable practical privacy-preserving analytics on big data with MPC
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Enable practical privacy-preserving analytics
on big data with Multi-Party Computation

* Provide insights into end-user barriers
and opportunities of MPC [Mads] g B

» Position MPC in data protection and BES o
- decklon egression e A

privacy laws (GDPR) [Anna]

 Enable MPC-based machine learning

 Demonstrate feasibility of MPC in healthcare
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MPC in the Data Science Methodology

Which dat levant?
Which dat ailable?
Are there legal rganizational
cons [57
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Ewvaluation

Focus MPC for now on modelling, inferences, some data preparation, etc
Pragmatically deal with (leaky) data analysis for exploration



MPC enabled machine learning and data analytics
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logistic regression
* neural networks
« CNN, MLP, federated

Accuracy 8,9342

* ridge regression - 11M records!
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Confusion matrix format: Actual (rowClass) predicted as (colusnClass) N times
20:41:59.371 [main] INFO dk.alexandra. fresco.al. fl.deno.MpcFiMnistParty ~
cach with 2000 local examples
20:41:59.371 (main) INFO dk.alexandra.fresco.ml.fl.deno.MpcFiMnistParty -

. 1159.371 (sain] INFO dk.alexandra. fresco.al. 1.deno. HpcF UinistParty —

® 59.371 [main] INFO dk.alexandra.fresco.al.fl.demo.HpcFUnistParty ~
+5815015
20:41:59.382 [main] INFO dk.alexandra.fresco.framework.network.AsyncNetwork - P1
Ran MNIST FL Deso with 3 parties each with 2080 local examples
Jonas-1aptop: fresco-l jonass []

Burrows-Wheeler Transform

* inexact DNA string search

logrank test
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Predictive analytics T logistic regression

Train logistic regression model for chronic heart failure survival risk

4 %3—
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@ Multi-Party Computatiof

Trained
model

. 1=

12 attributes
3000+ patients
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Input
horizontally segmented
remains private

Output
trained model (vector)

Special output

. intermediate model with
differential privacy
(for performance speedup)



Predictive analytics T logistic regression
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EFFICIENT SECURE COMPUTATION FRAMEWORH

heart failure
4 cancer 2476 rows

9 attr / : -
- 538 rows ‘ first full version

days

mtcars ()
3 attr / Y
32 rows

T . optimizations

| ,\"\, (to be validated)

Active security, 2-party

Speed performance sufficient

e improving every
development iteration

Accuracy on par with non-MPC
 differential privacy effect

Simple workflow & interface
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Descriptive analytics - Kaplan-Meier

Enable medical researchers to (privacy preserving) gain insight from data

Kaplan-Meier Survival Analysis — compare two classes, e.g. treatments
* Logrank test (chi2, p-value)

« KM curve
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Descriptive analytics - Kaplan-Meier

Party O: btrial Survival - individual events

1.0 —— -ve immunchistochemical response
—— +ve immunohistochemical response
0.8 4 Party 1: btrial Survival - individual events Party O: btrial Survival - individual events Party 0: btrial Survival - aggregated 9 events
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Passive security, 3-party |

Initialization

 Logrank test - output statistic (computed securely)

« KM curve - output privacy preserving visualization

Performance: seconds to minutes for large data sets

Simple workflow: Python, Jupyter Notebook, Lifelines Logrank test

The secure logrank test provides an exact answer (Chi2 statistic and p-value)

from scipy.stats import cl

-0
since todayavailableon https://github.com/Ischoe/mpyc M PyC s



Yes, MPC I s pract.

Selected use cases are feasible

C use for high value with no alternative

Predictive analytics — logistic regression

FRESCE

rrrrrrrr TSECURE COMPUTATEON FRAMERDRK

Active security, 2-party

Descriptive analytics - Kaplan-Meier

Passive security, 3-party _,
* Logranktest - outpul statistic {computed securely) =
= KM curve - output privacy preserving visualization

Performance: seconds to minutes for large data sets

Simple workflow: Python, Jupyter Notebook, Lifelines S —

-y
soon available on https://github.com/Ischoe/mpyc M Pvc N
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Evaluation

Broad adoption requires

ML library like R or Scikit Learn
Mature frameworks
Easier to use / program

(More performance)
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