
Paul Koster (PHI), Peter Norholt (ALX), Tore Frederiksen (ALX),
Jonas Lindstrøm (ALX)

D4.2 Proof-of-concept for results of
tasks 1.2 and 2.2:
Implementations of key MPC technologies

The project SODA has received funding from
the European Union’s Horizon 2020 research
and innovation programme under grant agree-
ment No 731583.

H2020-LEIT-ICT 731583 SODA Deliverable D4.2

December 18, 2018 Proof-of-concept for results of tasks 1.2 and 2.2 2

H2020-LEIT-ICT 731583 SODA Deliverable D4.2

December 18, 2018 Proof-of-concept for results of tasks 1.2 and 2.2 3

Project Information

Scalable Oblivious Data Analytics

Project number: 731583

Strategic objective: H2020-ICT-2016-1

Starting date: 2017-01-01

Ending data: 2019-12-31

Website: https://soda-project.eu/

Document Information
Title: Proof-of-concept for results of tasks 1.2 and 2.2:

implementations of key MPC technologies
ID: D4.2 Type: OTHER Dissemination

level:
PU

 Month: M24 Release date: 18.12.2018

Contributors, Editor & Reviewer Information
Contributors (per-
son(partner): sections)

Paul Koster (PHI): Chapters 4, 5, 6, 7 and 8
Peter Norholt (ALX): Chapter 3
Tore Frederiksen (ALX): Chapters 3 and 8
Jonas Lindstrøm (ALX): Chapters 2 and 8

Editor (person/partner) Jonas Lindstrøm (ALX)
Reviewer (person/part-
ner)

Peter van Liesdonk (PHI), Niek Bouman (TUE)

H2020-LEIT-ICT 731583 SODA Deliverable D4.2

December 18, 2018 Proof-of-concept for results of tasks 1.2 and 2.2 4

H2020-LEIT-ICT 731583 SODA Deliverable D4.2

December 18, 2018 Proof-of-concept for results of tasks 1.2 and 2.2 5

Release History

Release
num-
ber

Date issued Release description / changes made

1.0 18-12-2018 Initial release

H2020-LEIT-ICT 731583 SODA Deliverable D4.2

December 18, 2018 Proof-of-concept for results of tasks 1.2 and 2.2 6

SODA Consortium

Full Name Abbreviated Name Country
Philips Electronics Nederland B.V. PHI Netherlands
Alexandra Institute ALX Denmark
Aarhus University AU Denmark
Göttingen University GU Germany
Eindhoven University of Technology TUE Netherlands

Table 1: Consortium Members

H2020-LEIT-ICT 731583 SODA Deliverable D4.2

December 18, 2018 Proof-of-concept for results of tasks 1.2 and 2.2 7

Executive Summary
This report summarizes the deliverable D4.2 proof-of-concept implementations developed in the SODA
project, particularly related to tasks 1.2 and 2.2. These proof-of-concepts demonstrate:

• Efforts in making MPC more accessible to application developers through easy-to-use devel-
opment frameworks FRESCO and MPyC,

• Inclusion of novel MPC advancements in the FRESCO framework,
• Work on practical verifiable computations using zk-SNARKs,
• Implementations of data analytics and machine-learning algorithms using MPC, namely DNA

string search and logistic regression.

H2020-LEIT-ICT 731583 SODA Deliverable D4.2

December 18, 2018 Proof-of-concept for results of tasks 1.2 and 2.2 8

About this Document

Role of the deliverable

This deliverable consists of proof-of-concept implementations developed in task T4.1 in the SODA
project so far. The implementations are based on the results of tasks T1.2. and T2.2. The proof-of-
concept deliverables are available as open-source solutions online, and this report gives a brief descrip-
tion of each prototype and links to where the source code can be obtained.

Relationship to other SODA deliverables

This deliverable describes the proof-of-concept implementations created as part of task T4.1 which are
based on tasks 1.2 and 2.2 (general purpose protocols and algorithms). Deliverable 4.4 will consist of
proof-of-concept implementations created as part of task T4.1 based on tasks 1.3 and 2.3 (special pur-
pose protocols and algorithms), and some of these might be extensions of the proof-of-concepts pre-
sented in the present deliverable. Some of the proof-of-concept implementations provide a basis for the
demonstrators of D4.5 in task T4.2.

Relationship to other versions of this deliverable

N/A

Structure of this document

Chapter 3 describes the improvements and new functionality added to the FRESCO framework, and
Chapter 4 describes the MPyC framework. Chapter 5 and 6 describe the Geppetri and PySNARK pro-
totypes for verifying the correctness of computations. Chapter 7 describes a prototype for DNA string
search prototype. In chapter 8 a prototype for performing logistic regression on secret shared data is
presented as well as a Kotlin wrapper for the FRESCO framework allowing operator overloading.

Acknowledgements

Besides the authors this work reflects implementation efforts from: Berry Schoenmakers (TUE), Mark
Spanbroek (PHI), Meilof Veeningen (PHI), Sakina Asadova (PHI), Stefan van den Oord (PHI), Nikolaj
Volgushev (ALX) and others.

H2020-LEIT-ICT 731583 SODA Deliverable D4.2

December 18, 2018 Proof-of-concept for results of tasks 1.2 and 2.2 9

1 Table of Contents

Release History ... 5

SODA Consortium .. 6

Executive Summary .. 7

About this Document .. 8

Role of the deliverable .. 8

Relationship to other SODA deliverables ... 8

Relationship to other versions of this deliverable ... 8

Structure of this document .. 8

Acknowledgements ... 8

1 Table of Contents .. 9

2 Introduction ... 11

3 FRESCO ... 12

3.1 Introduction ... 12

3.2 General Improvements .. 12

3.3 SPDZ2k ... 13

3.4 Resources .. 14

4 MPyC .. 15

4.1 Introduction ... 15

4.2 Functionality and features ... 15

4.3 Applications .. 15

4.4 Resources .. 15

5 Geppetri... 17

5.1 Introduction ... 17

5.2 Functionality and features ... 17

5.3 Application .. 17

5.4 Resources .. 17

6 PySNARK ... 18

6.1 Introduction ... 18

6.2 Functionality and features ... 18

6.3 Applications .. 18

6.4 Resources .. 19

7 DNA Inexact String Search... 20

8 Developer-friendly MPC: operator overloading and co-routines ... 21

8.1 Introduction ... 21

8.2 Kotlin .. 21

8.3 Application .. 22

H2020-LEIT-ICT 731583 SODA Deliverable D4.2

December 18, 2018 Proof-of-concept for results of tasks 1.2 and 2.2 10

8.4 Resources .. 22

9 Bibliography ... 23

H2020-LEIT-ICT 731583 SODA Deliverable D4.2

December 18, 2018 Proof-of-concept for results of tasks 1.2 and 2.2 11

2 Introduction

This deliverable describes the status of six proof-of-concept implementations developed in the SODA
project as part of task T4.1. The main part of the deliverable are the actual proof-of-concept implemen-
tations, all of which are open-source with source code available online. This report gives a brief over-
view of the features and status of the different implementations.

Due to the complexity of MPC, implementing fast and secure MPC-based applications can be a difficult
task for application developers. To make the development of such applications easier, two development
frameworks have been co-developed and matured as part of SODA. In Chapter 3 we present improve-
ments to the FRESCO framework, and what new functionality and support for new cryptographic pro-
tocols has been added. The MPyC Python framework has been released in 2018, and we present some
of the features in Chapter 4. We have also experimented with a Kotlin-based wrapper around the
FRESCO framework to allow operator overloading, which could make complex calculations easier to
write. This is presented in Chapter 8.

Some work on verifiable computations is presented in chapter 5 and 6. In Chapter 5 we present Geppetri
which prototypes the concepts of zk-SNARK and adaptive Trinocchio, and in Chapter 6 PySNARK,
which is a Python-based system for zk-SNARK based verifiable computations and smart contracts, is
presented.

Two prototypes for data analytics are presented in chapter 7 and 8. In context of DNA string search, an
implementation was made in TUeVIFF (predecessor of MPyC) and related secret indexing for verifiable
computation in PySNARK. This is presented in Chapter 7. A privacy preserving logistical regression
algorithm was implemented using the FRESCO framework using the Kotlin wrapper and is presented
in chapter 8.

Partners shared the code of the proof-of-concept implementations with the project and the general pub-
lic, e.g. on GitHub under open source or research licenses. The location is provided for each of the
prototypes at the end of their corresponding chapters.

H2020-LEIT-ICT 731583 SODA Deliverable D4.2

December 18, 2018 Proof-of-concept for results of tasks 1.2 and 2.2 12

3 FRESCO

3.1 Introduction

FRESCO is a Java framework for efficient secure computation aiming at making the development of
prototype applications based on secure computation easy.

As part of this work package we have made substantial improvements and expansions to the FRESCO
framework. Both as part of a paper currently in submission [1], but also as part of other projects along
with overall improvements to enhance stability, usability and security.

3.2 General Improvements

During the SODA project FRESCO has moved towards a more organized approach to the development
and maintenance of the framework. This includes an increased focus on code quality by requiring full
test coverage, and doing code review of all newly added code. Furthermore, we have moved to a more
frequent release model, aiming at releases every 2-3 months and resulting in releases 1.0.0, 1.1.0, 1.1.1
and 1.1.2 over the SODA period so far. These releases include a major refactoring and restructuring of
the framework code that, among other things, split the framework into a number of sub-modules making
it simpler to maintain, extend and use the framework. Additionally, a number of new features has been
added in these releases:

• New Application Interface: A lot of work was done in order to improve the API towards
application programmers. I.e., the API to with which to specify MPC operations to be evaluated
as part of a larger application. Here we introduced a new builder pattern-based approach making
it easier to access the various library MPC functionality included in FRESCO, and to build
efficient MPC programs.

• SPDZ Preprocessing: An implementation of the preprocessing phase for the SPDZ protocol
was added, meaning that FRESCO now supports the full SPDZ protocol. The implementation
added to FRESCO is based on the MASCOT protocol [2]. The MASCOT protocol in turn relies
on Oblivious Transfer Extension which was also included in FRESCO based on the protocol of
Keller et al [3].

• Network Improvements: The networking functionality has been simplified and new network-
ing implementations were added to replace an old less stable implementation. Also, a network-
ing implementation has been added to make it easier to support secure networking using TLS
and examples of how to add TLS based communication was added.

• New Protocols: Two new MPC protocol implementations were added to the framework. A
basic version of the TinyTables protocol with semi-honest security (including its preprocessing
phase), and the SPDZ2k protocol as described below.

• New Library functionality: A number of new generic MPC functionalities were implemented
as library functionality in FRESCO. Among these are:

o A library for arithmetic with fixed point numbers including various linear algebra op-
erations on matrices which will be useful for the ongoing work in SODA with MPC
based machine learning.

o Aggregation functionality based on MiMC [4] encryption in MPC, which also required
new shuffling functionality to be added to the library.

H2020-LEIT-ICT 731583 SODA Deliverable D4.2

December 18, 2018 Proof-of-concept for results of tasks 1.2 and 2.2 13

o New implementations of comparison protocols based on the methods of Catrina and de
Hoogh [4] to complement the earlier implementation based on the protocols of Lipmaa
and Toft [5].

Apart from these additions to the main FRESCO repository a number of more experimental projects
based on FRESCO has been started as separate projects that are currently not (yet) included in the
main FRESCO repository. These include:

• Tools for outsourced MPC: Outsourced MPC refers to a setting where MPC is performed
among a few servers that securely take their inputs and deliver output to a much larger set of
clients. Thus, outsourced MPC is a simple way for MPC-based applications to scale well in the
number of parties. For this reason, we started work on a set of reusable tools for outsourced
MPC applications. Specifically, our work is focused on protocols for delivering output and
receiving input to the MPC server to and from the clients. Initially, we have implemented the
protocol of Damgård et al. (we note that while this has earlier been implemented in FRESCO,
the implementation was not suitable for reuse), and plan to also implement the approach of
Jakobsen et al. and possibly newly developed protocols resulting from the SODA project. The
repository for this work is available publicly via GitHub under the MIT license.

• Kotlin wrapper for FRESCO: Inspired by some work done by PHI as part of the prototype
on logistic regression, a wrapper for FRESCO allowing a developer to write applications using
FRESCO in Kotlin was developed. This is explained in more detail in section 8.

• MPC based Machine Learning: As part of the SODA project we are doing a number of ex-
periments with MPC based Machine Learning. This work includes the implementation of SVM
and Decision Tree algorithms in FRESCO to showcase the SPDZ2k protocol as described be-
low. Additional we have done work a basic implementation of Neural Networks as well. These
experiments are gathered in a publicly available repository on GitHub under the MIT license.

Apart from the code added to the various FRESCO repositories, the documentation for FRESCO has
also been updated to reflect the various changes made. Furthermore, we have opened a public chat
channel dedicated to FRESCO, which has proven quite valuable in providing support to new users.

3.3 SPDZ2k

The SPDZ2k paper [2] completed as part of the SODA project in T1.2, i.e. D1.2 section 2.5, and pub-
lished at CRYPTO 2018 showed how to use the SPDZ [3] paradigm for computation over the ring ℤ2𝑘𝑘,
rather than the field 𝔽𝔽𝑝𝑝. One major motivation of that work is that it facilitates integer arithmetic over
ℤ232 and ℤ264 as most CPUs do. For this reason, it is expected to allow for a more efficient implemen-
tation of the online phase. Furthermore, when computing over the same domain as CPUs, we expect it
to be possible to leverage operations and algorithms in this space, that might not work over 𝔽𝔽𝑝𝑝.

To test this conjecture, SODA authors worked on writing protocols for basic operations over ℤ2𝑘𝑘 such
as equality testing, truncation, and comparison [1]. To give credence to the conjecture, we implemented
SPDZ2k, along with the new protocols for basic operations, in FRESCO. Besides being essential for
the paper, this expansion of FRESCO furthermore enhances the general usefulness of the framework,
by now allowing computation over standard 32- and 64-bit integers. Thus, opening up the option of
implementing algorithms requiring such domains.

To show that this expansion also yielded more efficient online computation times in a sensible setting,
we chose to implement oblivious decision tree evaluation and support vector machine evaluation. Our
tests showed the online execution time of these to be between 2x and 5x times faster than SPDZ, in the
batched setting. We note that implementing exactly these algorithms is of general interest to the SODA

H2020-LEIT-ICT 731583 SODA Deliverable D4.2

December 18, 2018 Proof-of-concept for results of tasks 1.2 and 2.2 14

project, because they consider privacy preserving computation on big data. Specifically, the case of a
provider holding a large amount of data used to develop a model which it wishes to keep private, while
still allowing consumers to get input data classified using this model. Thus, yielding a privacy-preserv-
ing machine-learning-as-a-service.

More specifically we added the following implementations to FRESCO:
• Online support for SPDZ2k with an optimized, custom class handling arithmetic over 32- and

64-bit domains.
• A computationally efficient constant round equality testing protocol for SPDZ2k.
• A computationally efficient constant round comparison protocol for SPDZ2k.
• An efficient truncation protocol for SPDZ2k.

We expanded the machine learning library for FRESCO, called FRESCO-ML, with the following:
• An implementation of two-party oblivious decision tree evaluation in 𝑂𝑂(log(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ)) rounds.
• An implementation of two-party oblivious SVM evaluation in 𝑂𝑂(log(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑑𝑑𝑐𝑐)) rounds.

The additions to FRESCO will be available in release v. 1.1.3 and the additions to FRESCO-ML will
be available in the master branch.

3.4 Resources

FRESCO is available at GitHub at https://github.com/aicis/fresco, and the documentation can be
found at Read the Docs at https://fresco.readthedocs.io/en/latest/.

The public channel where we receive questions, bug reports and suggestions on how to improve
FRESCO can be found at https://gitter.im/FRESCO-MPC/Lobby.

The Kotlin-wrapper prototype can be found at https://github.com/aicis/fresco-kotlin-applications.

The prototype on tools for outsourced using FRESCO can be found on GitHub at
https://github.com/aicis/fresco-outsourcing.

The various prototypes on machine learning with FRESCO can be found on GitHub at
https://github.com/aicis/fresco-ml.

https://github.com/aicis/fresco
https://fresco.readthedocs.io/en/latest/
https://gitter.im/FRESCO-MPC/Lobby
https://github.com/aicis/fresco-kotlin-applications
https://github.com/aicis/fresco-outsourcing
https://github.com/aicis/fresco-ml

H2020-LEIT-ICT 731583 SODA Deliverable D4.2

December 18, 2018 Proof-of-concept for results of tasks 1.2 and 2.2 15

4 MPyC

4.1 Introduction

MPyC is a Python framework for secure multiparty computation. It was released 30 May 2018 at
TPMPC 2018. MPyC succeeds VIFF and TUeVIFF. MPyC targets usability and ease of use balanced
with efficiency.

Above properties make it well-suited for education and rapid prototyping of MPC applications, which
is demonstrated by its use in the academic curriculum, master projects and prototyping activities in and
outside SODA.

4.2 Functionality and features

In MPyC the details of the secure computation protocols are mostly transparent due to the use of so-
phisticated operator overloading combined with asynchronous evaluation of the associated protocols.
The latter is realized through the use of so-called co-routines, which results in a natural control flow.

MPyC supports secure m-party computation tolerating a dishonest minority of up to t passively corrupt
parties, where m ≥ 1 and 0 ≤ t ≤ (m-1)/2. The underlying protocols are based on threshold secret sharing
over finite fields (using Shamir's threshold scheme as well as pseudorandom secret sharing).

MPyC features a variety of protocols, e.g. for integers, fixed point numbers, linear programming. It also
supports easy input / output methods and hides (pseudorandom) secret sharing.

Communication is transparent. There is largely no difference between developing on a single host or a
distributed set of hosts. It supports secure communication through TLS.

The ability for 1-party computation enables developers to very easily prototype an MPC application.
Subsequently, very little changes are required to turn it into a secure multi-party computation.

4.3 Applications

MPyC comes with a number of sample applications, e.g. ID3 decision trees, sorting networks (depicted
in Figure 1).

Also SODA results from D1.2 and D2.2 have been prototyped using MPyC. This includes e.g. fast
secure comparisons for medium sized integers (D2.2 chapter 2), MPC implementation of BWT algo-
rithms for inexact DNA string search (D2.2 chapter 3), and secure convolutional networks (D2.2 chapter
4).

4.4 Resources

MPyC is available on GitHub at https://github.com/lschoe/mpyc. It also includes documentation.

MPyC is also available as a package in the Python Package Index (PyPI).

An introduction to MPyC is available at http://conferences.au.dk/fileadmin/user_up-
load/TPMPC18/Berry_Schoenmakers.pdf, which is also available as a video including demo at
http://vc.au.dk/videos/video/6826/ (from 51:37).

https://github.com/lschoe/mpyc
http://conferences.au.dk/fileadmin/user_upload/TPMPC18/Berry_Schoenmakers.pdf
http://conferences.au.dk/fileadmin/user_upload/TPMPC18/Berry_Schoenmakers.pdf
http://vc.au.dk/videos/video/6826/

H2020-LEIT-ICT 731583 SODA Deliverable D4.2

December 18, 2018 Proof-of-concept for results of tasks 1.2 and 2.2 16

Figure 1: secure sorting networks MPyC example application

H2020-LEIT-ICT 731583 SODA Deliverable D4.2

December 18, 2018 Proof-of-concept for results of tasks 1.2 and 2.2 17

5 Geppetri

5.1 Introduction

Geppetri prototypes the concepts presented SODA deliverable D1.2 chapter 8 on Pinocchio-Based
Adaptive zk-SNARKs and Secure and Correct Adaptive Function Evaluation.

That chapter and associated paper [4] show how to practically verify the correctness of the results of
computations that have been performed in a privacy-preserving manner. To do this it gives a new con-
struction of adaptive zk-SNARKs based on Pinocchio, which allows a prover to repeatedly prove state-
ments about some committed input, whilst hiding the input in a zero-knowledge manner. It then shows
how this can be applied to the Trinocchio system, to obtain a verifiable multi-party computation proto-
col, where private computations can be repeatedly performed and verified, such that the sensitive data
is even hidden from the prover by multi-party computation.

Geppetri is built on top of a custom VIFF implementation.

5.2 Functionality and features

In Geppetri computations can be specified at a high level using a Python frontend. These can be exe-
cuted either locally or in a privacy-preserving way using multi-party computation and then automati-
cally proven and verified to be correct by a C++ backend.

For further details on features and implementation we refer to section 6.1 of [4] and the software.

5.3 Application

The Geppetri tooling has been applied to build a prototype in a medical research case study, i.e. logrank
statistical test. For this and other simple examples see the README.

5.4 Resources

Geppetri code is available on GitHub at https://github.com/meilof/geppetri.

https://github.com/meilof/geppetri

H2020-LEIT-ICT 731583 SODA Deliverable D4.2

December 18, 2018 Proof-of-concept for results of tasks 1.2 and 2.2 18

6 PySNARK

6.1 Introduction

PySNARK is a Python-based system for zk-SNARK (zero-knowledge succinct non-interactive argu-
ment of knowledge) based verifiable computations and smart contracts. It is based on the Pinocchio
system and the Geppetri extension for proofs on authenticated data. For Geppetri see chapter 8 of SODA
deliverable D1.2. PySNARK succeeds in part the Geppetri prototype presented in the previous section.

6.2 Functionality and features

PySNARK makes it possible to program verifiable computations in Python. This solves the problem
that it is quite hard to specify verifiable computations. PySNARK automatically creates a proof.

To verify proofs, PySNARK can automatically generate smart contracts. Particularly, verifiable com-
putations can be turned into Solidity smart contracts for use on the Ethereum blockchain.

The PySNARK toolchain supports each of the different types of parties in a verifiable computation:
trusted party, prover, or verifier.

Values used in a verifiable computation are called variables of the Var class, which can represent in-
puts/outputs, witnesses, or committed data. Python operator overloading for addition, subtraction and
multiplication is used to work with these variables in a convenient manner.

PySNARK also includes a library with efficient verifiable computations. Examples include fixed-
point arithmetic, GGH hash function, secret indexing. The privacy-preserving verifiable fixed-point
division is presented in SODA D1.2 chapter 11. SODA D1.2 chapter 10 on data-oblivious array slic-
ing with sliding windows is a further candidate for PySNARK.

6.3 Applications

PySNARK has been put into practice with a number of applications. To illustrate its use consider the
examples folder on the GitHub repository.

PySNARK is also used to prototype SODA verifiable computation work. SODA deliverable D1.2 sec-
tion 8.4 applies verifiable computation on a statistical test for medical survival analysis known as
Kaplan-Meier.

Similarly PySNARK was used for oblivious verification of inexact string matches (SODA D1.2, chapter
9), which builds on the MPC-implementation of the BWT algorithm to search in DNA. A possibility to
authenticate the search result in a larger string through a Merkle hash tree has been added too.

$ python cube.py 3
The cube of 3 is 27
 main main 8d72a44bde04cf2 5 *
qaplen: 5 blklen: 0 extlen: None sz 8 pubsz 0
*** Generating master key material
Generating new mastersk and keys, sizes 8/0
done
New signature for function main, rebuilding keys
Generating functon key material using master secret key
Reading QAP...
Generating keys...
Using QAP degree=8
Writing to pysnark_ek_main
Writing to pysnark_vk_main
Reading QAP from (pysnark_eqs_main,pysnark_ek_main)
Proving main (pysnark_ek_main)
Compute h 1

H2020-LEIT-ICT 731583 SODA Deliverable D4.2

December 18, 2018 Proof-of-concept for results of tasks 1.2 and 2.2 19

Reading QAP vk: pysnark_vk_main
Verifying main (pysnark_vk_main) 1
Verification succeeded
 prover keys/eqs: pysnark_masterek pysnark_ek_main pysnark_eqs_main pysnark_schedule
 prover data:
 verifier keys: pysnark_masterpk pysnark_vk_main pysnark_schedule
 verifier data: pysnark_proof pysnark_values
 verifier cmd: pysnark/qaptools/qapver pysnark_masterpk pysnark_schedule
pysnark_proof pysnark_values

Figure 2: example PySNARK run for cube 3

6.4 Resources

The PySNARK software and source code is available on GitHub via http://pysnark.tk which forwards
to https://github.com/Charterhouse/pysnark.

Above repository also hosts documentation and write-up available through https://github.com/Char-
terhouse/pysnark/blob/master/docs/PySNARK.pdf.

A one-minute introduction talk of PySNARK at RealWorldCrypto 2018 is available at
https://youtu.be/o4U0Gfh-0L4?t=441.

http://pysnark.tk/
https://github.com/Charterhouse/pysnark
https://github.com/Charterhouse/pysnark/blob/master/docs/PySNARK.pdf
https://github.com/Charterhouse/pysnark/blob/master/docs/PySNARK.pdf
https://youtu.be/o4U0Gfh-0L4?t=441

H2020-LEIT-ICT 731583 SODA Deliverable D4.2

December 18, 2018 Proof-of-concept for results of tasks 1.2 and 2.2 20

7 DNA Inexact String Search
The DNA inexact string search work presented in SODA deliverable D2.2 chapter 3 was prototyped.
This provides an MPC-based implementation of the BWT algorithm.

The implementation is made in TUeVIFF.

> python simple_bwt.py player1_1.ini ACGT A 1
2018-10-24 15:30:53+0200 [-] Log opened.
2018-10-24 15:30:53+0200 [-] indexed search string [1]
2018-10-24 15:30:53+0200 [-] mismatch limit 1
2018-10-24 15:30:53+0200 [-] Sorting [['C', 'G', 'T', '$', 'A', 1], ['G', 'T', '$',
'A', 'C', 2], ['T', '$', 'A', 'C', 'G', 3], ['$', 'A', 'C', 'G', 'T', 4], ['A', 'C',
'G', 'T', '$', 0]]
2018-10-24 15:30:53+0200 [-] Sorting [['C', 'G', 'T', '$', 'A', 1], ['G', 'T', '$',
'A', 'C', 2], ['T', '$', 'A', 'C', 'G', 3], ['$', 'A', 'C', 'G', 'T', 4], ['A', 'C',
'G', 'T', '$', 0]]
2018-10-24 15:30:53+0200 [-] transform= ['T', '$', 'A', 'C', 'G'] suffix array= [4, 0,
1, 2, 3]
2018-10-24 15:30:53+0200 [-] BWT: 0.001512765884399414
2018-10-24 15:30:53+0200 [-] [('A', 0, [0, 0, 1, 1, 1]), ('C', 1, [0, 0, 0, 1, 1]),
('G', 2, [0, 0, 0, 0, 1]), ('T', 3, [1, 1, 1, 1, 1]), ('$', 0, [0, 1, 1, 1, 1])]
2018-10-24 15:30:54+0200 [-] inexact search: 1.1039559841156006
2018-10-24 15:30:54+0200 [-] Initializing VC (data dir=data/)
2018-10-24 15:30:54+0200 [-] general search result: res [{1}, {1}, {1}, {1}, {1}]
found {1} pos {4} mymap [{4}, {2}, {4}]
2018-10-24 15:30:54+0200 [-] map printed: [{4}, {2}, {4}]
2018-10-24 15:30:54+0200 [-] inverse: ['A', 'C', 'G']

Figure 3: prototype run on 1-party small example

A related prototype concerns DNA proofs (see SODA deliverable D1.2 chapter 9), which is imple-
mented using PySNARK. Here, the code has to search for a substring in a DNA string, up to a maximal
edit distance, and to prove using verifiable computation that such a match was indeed found.

The prototype first reports the location on which a match was found, and then it prints the hashes for
hash tree authentication, finishing with the hash of the root node of this particular hash tree.

For efficiency, the prototype also includes the method presented in SODA deliverable D1.2 chapter 10
on a data-oblivious technique for array slicing. This is used for proving, in a verifiable computation,
that a DNA string contains a particular substring as presented in the previous section. One of the steps
in this computation is to retrieve a substring from the DNA string in order to prove that it matches the
requested substring, e.g., with some spelling mistakes. Here, the DNA string is typically very long, so
being able to do this with just one linear scan through the DNA string is highly desirable.

H2020-LEIT-ICT 731583 SODA Deliverable D4.2

December 18, 2018 Proof-of-concept for results of tasks 1.2 and 2.2 21

8 Developer-friendly MPC: operator overloading and co-routines

8.1 Introduction

Developer-friendly MPC is critical to support adoption of MPC technology. SODA partners experi-
mented with two programming concepts: operator overloading and co-routines.

Operator overloading enables developers to use regular notations for operators, e.g. arithmetic, which
abstract from MPC complexities when operating on secret shared data types.

Co-routines similarly enable developers to preserve a (relatively) simple control flow in MPC (distrib-
uted) computation. Co-routine language constructs enable hiding of many of the complexities caused
by MPC deferred evaluation. It particularly avoids many of the disadvantages of dealing with callbacks
as a developer.

Ideation and proof of concept implementation on this topic is an example of cross-fertilization between
SODA partners Philips, Alexandra and TUE. PHI suggested co-routine inclusion in TUeVIFF (now
MPyC, see section 4). PHI also experimented with operator overloading and co-routines through a Ko-
tlin language wrapper around the FRESCO APIs and a logistic regression implementation. ALX
adapted and improved the wrapper.

8.2 Kotlin

Kotlin is a statically typed programming language whose code is compiled to Java bytecode, allowing
it run on top of the JVM. Unlike Java, Kotlin supports operator overloading, meaning the arithmetic
operators such as -, +, * and / and be overridden to reflect custom code within a certain scope.

Overriding these operators with their corresponding MPC implementations within a build scope in
FRESCO allows for much more direct, faster and easier to read implementations of MPC applications.
For this reason, PHI worked on a Kotlin wrapper to work on top of FRESCO. This wrapper adds oper-
ator overloading for standard arithmetic operations, but also adds overloaded implementations for vec-
tor and matrix operations as well. For example, calculating the standard logistic function of a secret
shared value in FRESCO is done using the builder pattern, and could be written like this:

builder.realNumeric().div(1.0, builder.realNumeric().add(1.0, builder.realAdvanced()

.exp(builder.realNumeric().negate(x))))

With operator overload in Kotlin and access to library functions such as the exponential function, the
same expression can be written as:

1.0 / (1.0 + exp(-x))

Furthermore, a custom Kotlin implementation leveraging the readability of co-routines in this language,
was made of FRESCO’s MPC execution pipeline for the specific setting of privacy preserving logistic
regression. However, this proof of concept has limitations, because it implies sequential execution and
the entire MPC application to stay in memory.

ALX generalized the Kotlin wrapper to work universally with any MPC implementation using
FRESCO. Concretely this was done by writing a Kotlin wrapper for overloading operations -, +, * and
/ along with <= and >. Furthermore -, + and * was also implemented as component-wise operations on
lists. This generalized wrapper was made to work with FRESCO 1.0.0 for any type of MPC application,
using FRESCO’s pipelined execution. That is, based on scopes of sequential and parallel execution,
where only a single scope is required to remain in memory.

H2020-LEIT-ICT 731583 SODA Deliverable D4.2

December 18, 2018 Proof-of-concept for results of tasks 1.2 and 2.2 22

8.3 Application

The operator overloading and co-routine concepts are further demonstrated in a proof of concept to
privately construct a logistic regression model based on abovementioned Kotlin language wrapper for
FRESCO.

The specific algorithm for privacy preserving logistic regression implemented is based on an approach
by Shi et al. [5], optimized by using Cholesky decomposition as part of the process to solve linear
systems [6]. Specifically, this can be used to construct classification models based private data, which
is of particular importance in the medical setting.

8.4 Resources

The initial Kotlin wrapper and the logistic regression implementation is available at
https://github.com/meilof/Fresco-Logistic-Regression.
A test suite is available at https://github.com/meilof/TestLogisticRegression.

A write up on the use of co-routines together with documentation of the pipeline implementation is
available at https://github.com/meilof/TestLogisticRegression/blob/master/coroutines.pdf [7].

The adapted and improved Kotlin wrapper implementation is available at https://github.com/ai-
cis/fresco-kotlin-applications. The adapted implementation of logistic regression is available at
https://github.com/jonas-lj/Fresco-Logistic-Regression

https://github.com/meilof/Fresco-Logistic-Regression
https://github.com/meilof/TestLogisticRegression
https://github.com/meilof/TestLogisticRegression/blob/master/coroutines.pdf
https://github.com/aicis/fresco-kotlin-applications
https://github.com/aicis/fresco-kotlin-applications
https://github.com/jonas-lj/Fresco-Logistic-Regression

H2020-LEIT-ICT 731583 SODA Deliverable D4.2

December 18, 2018 Proof-of-concept for results of tasks 1.2 and 2.2 23

9 Bibliography

[1] I. Damgård, D. Escudero, T. Frederiksen, P. Scholl and N. Volgushec, "New Primitives for

Actively-Secure MPC mod 2k with Applications to Private Machine Learning," in In submission,
2018.

[2] M. Keller, E. Orsini and P. Scholl, "MASCOT: Faster Malicious Arithmetic Secure Computation
with Oblivious Transfer," ACM Conference on Computer and Communications Security, pp. 830-
842, 2016.

[3] M. Keller, E. Orsini and P. Scholl, "Actively Secure OT Extension with Optimal Overhead,"
CRYPTO, vol. 1, pp. 724-741, 2015.

[4] M. Albrecht, L. Grassi, C. Rechberger, A. Roy and T. Tiessen, "MiMC: Efficient encryption and
cryptographic hashing with minimal multiplicative complexity.," Advances in Cryptology –
ASIACRYPT 2016. ASIACRYPT 2016. Lecture Notes in Computer Science, vol. 10031, pp. 191-
219, 2016.

[5] O. Catrina and S. de Hoogh, "Improved primitives for secure multiparty integer computation,"
SCN'10 Proceedings of the 7th international conference on Security and cryptography for
networks, pp. 182-199, 2010.

[6] H. Lipmaa and T. Toft, " Secure Equality and Greater-Than Tests with Sublinear Online
Complexity," ICALP, vol. 2, pp. 645-656, 2013.

[7] R. Cramer, I. Damgård, D. Escudero, P. Scholl and C. Xing, "SPDZ2k: Efficient MPC mod 2k
for Dishonest Majority," in CRYPTO, Santa Barbara, California, 2018.

[8] I. Damgård, V. Pastro, N. Smart and S. Zakarias, "Multiparty Computation from Somewhat
Homomorphic Encryption," in CRYPTO, Santa Barbara, California, 2012.

[9] M. Veeningen, "Pinocchio-Based Adaptive zk-SNARKs and Secure/Correct Adaptive Function
Evaluation," in Africacrypt 2017, 2017.

[10] H. Shi, C. Jiang, W. Dai, Y. Tang, L. Ohno-Machado and S. Wang, "Secure Multi-pArty
Computation Grid LOgistic REgression (SMAC-GLORE," in Translational Bioinformatics
Conference, Tokyo, 2015.

[11] V. Nikolaenko, U. Weinsberg, S. Ioannidis, M. Joye, D. Boneh and N. Taft, "Privacy-Preserving
Ridge Regression on Hundreds of Millions of Records," in IEEE Symposium on Security and
Privacy, Berkeley, 2013.

[12] M. Veeningen, "Programming MPC applications with FRESCO using Kotlin and Coroutines,"
24 January 2018. [Online]. Available:
https://github.com/meilof/TestLogisticRegression/blob/master/coroutines.pdf.

	Release History
	SODA Consortium
	Executive Summary
	About this Document
	Role of the deliverable
	Relationship to other SODA deliverables
	Relationship to other versions of this deliverable
	Structure of this document
	Acknowledgements

	1 Table of Contents
	2 Introduction
	3 FRESCO
	3.1 Introduction
	3.2 General Improvements
	3.3 SPDZ2k
	3.4 Resources

	4 MPyC
	4.1 Introduction
	4.2 Functionality and features
	4.3 Applications
	4.4 Resources

	5 Geppetri
	5.1 Introduction
	5.2 Functionality and features
	5.3 Application
	5.4 Resources

	6 PySNARK
	6.1 Introduction
	6.2 Functionality and features
	6.3 Applications
	6.4 Resources

	7 DNA Inexact String Search
	8 Developer-friendly MPC: operator overloading and co-routines
	8.1 Introduction
	8.2 Kotlin
	8.3 Application
	8.4 Resources

	9 Bibliography

