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Executive summary

This WP2 deliverable contains research results on the topic of secure multiparty computation and have
been obtained during the first half of the SODA project. The scope of this deliverable is application-
oriented, with a strong focus on data mining applications. Our scope includes MPC primitives specifi-
cally developed with an application in mind, building blocks from applied mathematics that are partic-
ularly relevant for data mining (such as linear algebra), as well as application-specific research work
(e.g., the evaluation of a neural network in MPC). The main objective is to devise optimized multi-
party computation protocols that enable or make a step forward towards the application of MPC to
large volumes of data. In the light of the above objective, this deliverable presents several contribu-
tions; below we give a summary per chapter.

Secure Linear Algebra over Q. Suppose that A is some non-singular matrix, belonging to the ring
of n-by-n matrices with integer coefficients. We are interested, when given a secret sharing JAK of
the entries of A, in securely computing the inverse JA−1K or securely solving a linear system AX = B,
given an n-by-m matrix B with integer coefficients, for the unknown matrix X . In general, A−1 is
an element of Qn×n, which poses a challenge since secure multiparty computation naturally offers
arithmetic in a finite field. One approach to deal with this “mismatch” would be to apply rational
reconstruction [110, 111, 25]. Unfortunately, performing rational reconstruction obliviously would be
rather costly in terms of computation and round complexity.

In this work we present an approach, inspired by integer-preserving Gaussian elimination [6], to
securely compute the inverse of A over Q without using rational reconstruction. The main idea is to
circumvent the occurrence of rational entries in the result by representing the inverse as the pair of the
adjugate and the determinant of A, which are both integer-valued whenever A is integer-valued. Our
protocol is inspired by Cramer and Damgård’s protocol [21] for secure computation of the determinant
over a finite field, which builds on work by Bar-Ilan-Beaver [5]. In the final section, we present secure
ridge regression as a machine-learning application of our protocol.

Fast Secure Comparison for Medium-Sized Integers. In 1994, Feige, Killian and Naor proposed
a three-party1 protocol for secure comparison in F7 for inputs a,b ∈ [0,2]. Their protocol is based on
the observation that the Legendre symbol of x := a−b,

(x
p

)
, for p = 7 and for all x ∈ [−2,2] coincides

with sgn(x), the sign of x. Yu applies the idea of using the Legendre symbol for secure comparison in
the context of N-party MPC (for arbitrary N), and presents a constant-rounds protocol for comparing
integers from the interval [−d,d], where d = O(log p).

In this work, we present new quadratic-residuosity-based comparison protocols that employ some
form of error-correction to increase d by a constant factor, while enjoying a one-round (resp. two-
round) online phase. We investigate the size of the prime (i.e. the finite-field size) needed to compare
integers from the interval [−d,d] with our method, via asymptotic bounds as well as numerically. In
particular, we introduce a novel way to find primes that give rise to patterns of quadratic residues and
non-residues that are “noisy encodings” of the sign function, where the errors are sufficiently sparse
such that our error-correction method can correct them. We demonstrate the practical relevance of our
protocols by means of applying them to secure neural network evaluation.

1In this three-party scenario, two players provide inputs a resp. b and one “helper party” learns whether a < b, a = b or
a > b, but nothing beyond this.
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Secure DNA String Matching. The Burrows–Wheeler transform (BWT) was introduced in 1994
[17] as a compression algorithm. Apart from compression, it can also be used to solve the approximate
string-matching problem, where one aims to find sub-strings of a reference string X that approximately
match a given query string W . When we consider W and X to be genomic data, solving the approxi-
mate matching problem allows one to query for specific DNA mutations. In real-world applications,
a genomic query string W can be considered as secret input, since it can contain information that is
specific to an illness or condition. The reference string X could also be regarded as secret, since it
might be associated to a specific patient, which would make it privacy-sensitive data.

In this chapter, we present a Python implementation of BWT-based approximate string-matching
utilizing the MPyC framework, which is based on Shamir secret sharing. We first analyze the details
of an MPC implementation of the BWT-based approximate string matching algorithm with private
query string W . Secondly, we analyze the secure algorithm where both W and the reference string X
are regarded as secret input. We conclude with some experimental results.

Secure Evaluation of Convolutional Neural Networks. Convolutional neural networks (CNNs)
have become a popular and effective class of machine learning algorithms. We have investigated
performing classication of images of hand-written digits in MPC. In particular, we focus on an out-
sourcing scenario in which the parameters of the network as well as the inputs remain in secret-shared
form. Keeping the parameters secret prevents theft of the model by third parties; the input images
are kept secret because they may contain sensitive information, such as credit card numbers. We have
designed and implemented several alternative secure evaluation of CNNs, either using integer arith-
metic only or using fixed-point arithmetic. We describe a number of optimizations that we used in our
implementations and we report some experimental results.

Conclave: a Secure Query Compiler. MPC makes it possible to perform data analysis jointly over
large private data sets, and this application has a wide range of use cases. However, two main problems
arise when integrating MPC into the “big data” analytics context: (1) data analysts typically lack MPC
expertise; (2) MPC frameworks do not yet scale well to large data sizes. Conclave is an MPC-enabled
query compiler that lets data analysts write relational queries as if they had access to all parties’ data
in the clear. Conclave then turns the queries into a combination of efficient local processing steps and
secure MPC steps. This hybrid approach gives a clear speedup over MPC data processing frameworks
that perform the entire computation securely. Compared to earlier hybrid solutions, Conclave has
minimal annotation burden — none by default, and optional column-level annotations on input tables
to improve performance.

Distributed RSA Key Generation When working on large amounts of data coming from many
different clients, it is not desirable to have all the different input sources participate in an MPC ex-
ecution. Ideally we would like these parties to be able to preprocess their own data and allow this
to be obliviously given as input to an MPC computation carried out by a small number of servers.
This is achievable if the clients can encrypt, and send to the servers, their preprocessed data using a
public key encryption scheme; assuming servers have a secret sharing of the private key. However,
for popular schemes such as RSA or Paillier it is not easy to construct a public key with a secret
shared private key, as this requires distributed random prime generation. Our work [35], presented
at CRYPTO 2018, shows how to do this for RSA keys in the crucial two-party setting. The previous
state-of-the-art work in this area achieves this task, only in the semi-honest setting, in an average of 15
minutes. We manage to push this to an average of 42 seconds on a standard machine, but in the mali-
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cious setting. We achieve this by getting malicious security almost for free with a slight modification
of the “standard” ideal functionality in this setting, allowing us to only require a single lightweight
zero-knowledge proof at the end of the protocol to get full malicious security.
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About this Document

Role of the deliverable

This deliverable contains several research results on the topic of MPC tailored to the problems in data
mining, and have been obtained during the first half of the SODA project. This deliverable is part of
Work Package 2.

The scope of this deliverable is application-oriented, with a strong focus on data mining applica-
tions. More precisely, our scope includes MPC primitives specifically developed with an application in
mind, building blocks from applied mathematics that are particularly relevant for data mining (such as
linear algebra), as well as application-specific research work (e.g., the evaluation of a neural network
in MPC). Within this scope, our objective is to devise optimized multi-party computation protocols
that enable or make a step forward towards the application of MPC to large volumes of data. In the
light of the above objective, this deliverable presents several contributions, like protocols for solving
linear systems, computing the sign of an integer in a bounded range, inexact string matching, neu-
ral network evaluation, distributed RSA key generation, and a framework for performing SQL-like
queries in an MPC context.

Results of this deliverable have the potential to support proof of concept and demonstrators to be
developed in WP4. What results precisely will be actually used to build on top of is undecided at
this moment. A candidate for example is the work on secure comparisons for medium-sized integers,
which may be leveraged in model learning algorithms for e.g. predictive analytics use cases. Similarly,
insights gained with secure neural network evaluation may be leveraged in the use case for predictive
models that may be using neural networks in combination with federated learning.

Relationship to other SODA deliverables

This deliverable builds upon the deliverables D1.1 and D2.1, which survey the state of the art in
privacy-preserving data mining. Whereas the latter deliverables survey existing work, this deliverable
presents new results. In deliverable D2.3, we plan to focus on secure streaming algorithms.

Most results presented here are accompanied with a prototype / PoC implementation, which are
covered by deliverable D4.2.

Relationship to other versions of this deliverable

n/a

Structure of this document

The document contains five chapters covering recent research. Section 1 presents a new protocol for
securely solving full-rank linear systems over the rationals. Section 2 introduces a new technique for
performing a secure comparison for medium-sized integers in a single round of communication in the
online phase, which is especially useful for fast neural-network evaluation. Section 3 presents a secure
protocol for inexact string matching, which has applications in DNA matching. Section 4 presents
research results of a project on secure neural network evaluation. Section 5 presents Conclave, a new
query compiler that makes MPC available and usable to data analysts, by means of automatically
converting SQL queries into a mix of local processing steps and distributed secure MPC steps.
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1 Linear Algebra over Q in the context of MPC

1.1 Introduction

Let Mn(Z) denote the ring of n-by-n matrices over Z. Let A∈Mn(Z) be any non-singular matrix. We
suppose that A is secret-shared between the players, denoted as JAK, which implies that the elements
of A must be represented in some finite ring or finite field. Note that the dimensions of the matrix A,
along with the property that A is non-singular, is public information.

We would like to either compute the inverse of A, i.e., A−1, or solve the system Ax = b, where
b ∈ Zn is some arbitrary vector, for the unknown vector x (of length n), or, more generally, the system
AX = B, with B ∈ Zn×m and the unknown matrix X having the same dimension as B. In general, the
inverse A−1 will have rational coefficients (in the field Q). A−1 has integer coefficients if and only
if A ∈ GLn(Z) (the general linear group over Z), which is the case iff detA ∈ {−1,1}. Likewise,
vector x, resp. matrix X will in general have rational coefficients. In this section, we will answer the
following questions.

• How can we securely compute, and represent, secret sharings of the inverse A−1 ∈ Qn×n and
the solution X ∈Qn×m of a linear system AX = B with A∈Zn×n having full rank and B∈Zn×m,
when given an arithmetic black-box (ABB), i.e., some MPC framework that provides secure
arithmetic in a finite ring or field?

• Assuming that the above can be achieved, then how large should we choose the ring or field
order (the modulus) from the ABB, in order to be able to represent a secret-shared version of
the result (i.e., JA−1K, the solution JXK, etc.) without loss of information?

To securely represent the elements of A and perform secure operations on them, we must represent
them within some finite algebraic structure. Although we must compute over this structure, the prob-
lem we aim to solve is defined over the integers and the result we obtain must correspond to the
solution to the integer problem. In the remainder of this section we consider the case where the el-
ements of A are represented in the finite field of integers modulo prime p, which we denote as Fp.
Because we must be able to identify the elements of both A and the result of our computation with
the solution over the integers, this means that the modulus should be chosen “large enough”. We will
specify later what “large enough” should mean.

1.1.1 Related Work

Secure Linear Algebra over the Rationals and over Finite Fields. In the multiparty scenario,
Toft performs secure linear algebra over Q for securely solving linear programs [102]. Many of
the earlier works on secure linear algebra (in the multiparty case) focus on linear algebra over finite
fields. Bar-Ilan and Beaver [5] propose a constant-round MPC protocol for the secure inversion of
field elements and matrices. Cramer and Damgård [21] propose constant-round MPC protocols for
secure computation of the determinant, characteristic polynomial, rank, and the solution space of
linear systems of equations. Cramer et al. [23] improve the computational complexity (the number of
secure multiplications) of securely solving a linear system of n equations in m variables with m ≥ n
from m5 (when using the protocol of [21]) to n4 +m2n.

Interplay between Finite Fields and Rational Numbers. An important technique to exploit the
correspondence between rational arithmetic and integer arithmetic modulo a prime is p-adic lifting,

Sunday 30th September, 2018 D2.2 Application-Oriented MPC Protocols 13
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also known as rational reconstruction, see [110, 111, 25] and references therein. Given a computa-
tion that would yield a rational result, the idea is to perform this computation in arithmetic modulo a
prime, and, as the final step, recover the numerator and denominator of the rational number by means
of performing basis reduction in a two-dimensional lattice (e.g., by running the Lagrange–Gauss al-
gorithm). Formally, a fraction a/b for integers a and b is represented in the finite field as the element
x = a ·b−1. As long as |a|, |b| ≤

√
p/2, we can uniquely reconstruct a and b from x by reducing the

lattice basis {(p,0),(x,1)}, in the sense that the reduced basis will contain the vector (a,b).
More recently, researchers have realized the usefulness of this technique in secure computation

[33, 58, 40], where it is not to be confused with rational (in the game-theoretic sense) reconstruction
in the context of rational secret sharing [45]. In each of those works, however, the scenario is such
that the rational reconstruction procedure itself can be performed “in the clear.”

Applying rational reconstruction obliviously seems to be impractical: one would have to run K(p)
iterations of the Lagrange–Gauss algorithm, where K(p) is the number of iterations required to re-
duce the worst-case input lattice basis, asymptotically K(p) = O(log p) as proved by Vallée [108].2

Moreover, in each such iteration one has to perform a secure (non-exact) division, whose “cost” (com-
putational and round complexity) is comparable to a secure comparison.

1.1.2 Contribution

We propose in Section 1.3 a constant-round protocol for computing the inverse of A over Q. Our
protocol is an adapted version of Cramer and Damgård’s protocol for secure computation of the de-
terminant over a finite field [21], which builds upon Bar-Ilan–Beaver’s inversion protocol [5].

Conceptually, one way to obtain the inverse of A over Q would be to first compute the inverse of A
over Fp (using the techniques from [5, 21]), followed by an oblivious version of rational reconstruc-
tion. As argued above, however, applying oblivious rational reconstruction would be impractical.

Our main idea, inspired by integer-preserving Gaussian elimination [6], is to circumvent the need
for rational reconstruction by preventing the occurrence of rational numbers while solving a linear
system. The key point is that the adjugate of a A, adjA, is integer-valued whenever A is integer-valued.
Hence, whenever we want to securely compute the inverse of A (or solve for X in the system AX = B),
we omit dividing by the determinant of A and return the answer in the form of the pair (detA,adjA)
or, respectively, (detA,(adjA)B), because it is precisely the division by detA that is responsible for
introducing rational numbers in the result.

1.2 Preliminaries

Let R be a finite commutative ring, and let n ∈N be nonzero. For any n×n matrix A with entries in R,
we write detA for the determinant of A, and we define the (i, j)-th minor of A, denoted as minor(A)i, j,
as the determinant of the submatrix of A obtained by removing the ith row and jth column of A. The
leading principal minor of order k of A is defined as the determinant of the submatrix of A obtained
by taking the first k rows and the first k columns of A. Hence, the leading principal minor of order
n coincides with detA. We define the adjugate of A as adjA, where (adjA)i, j := (−1)i+ jminor(A) j,i,
for all 1 ≤ i, j ≤ n. The following bound is due to Hadamard. For any square n-by-n matrix M with
coefficients mi, j ∈ [−B,B] for all i, j ∈ [n], it holds that

|detM| ≤ HadB(n) := Bnnn/2.

2Vallée [108] expresses her upper bound on the number of iterations of the Lagrange–Gauss algorithm in terms of the
“inertia” ` of a basis. For rational reconstruction in the worst case, we have that `= p2 +(p−1)2 +1 = O(p2).
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Definition 1.1. We say that a square n×n matrix A is LU-decomposable if and only if there exists an
n×n lower triangular matrix L with ones on its diagonal and an n×n upper triangular matrix U such
that A = LU . Such L and U are called A’s LU decomposition.

Proposition 1 ([51, Corollary 3.5.5]). Let A be any square and invertible matrix. Then, A admits an
LU factorization (i.e., without any pivoting) if and only if all its leading principal minors are nonzero.

Proposition 2. The probability that a uniformly random matrix R ∈Mn(Fp) has the property that all
leading principal minors (i.e., including the matrix R itself) are non-zero equals

Ppivot-free = Ppivot-free(n, p) :=
(

1− 1
p

)n

.

Proof. Trivially, a 1-by-1 random matrix over Fp is non-singular with probability 1− 1/p. For any
k ∈ N, k > 1, the probability that a uniformly random matrix in Mk(Fp) has non-zero determinant,
when given that its leading principal minor of order k− 1 is non-zero, also equals 1− 1/p. This
follows from Schur’s determinant identity,

det
(

A B
C D

)
= det(A)det(D−CA−1B).

which we apply with A a (k−1)-by-(k−1) matrix that is non-singular in the conditional probability
space that we consider here, B a (k− 1)-by-1 matrix, C a 1-by-(k− 1) matrix, and D a uniformly
random field element. In this case, the term D−CA−1B represents just a single field element. Because
D is uniformly random and (statistically) independent from CA−1B, D−CA−1B is uniformly random,
and non-zero with probability 1−1/p. We obtain the claim by induction on k.

In order to interpret finite-field elements as signed integers, we use the following map

σ : Fp→ Z

x 7→

{
x if x≤ 1

2(p−1),
x− p otherwise.

For any matrix A ∈ Fn×m
p , for arbitrary non-zero n,m ∈ N, we write σ(A) for the element-wise appli-

cation of σ to A.
Let X be a finite set and let PX be the set of non-negative real-valued functions on X . Statis-

tical distance is the function defined as

SD : PX ×PX → R
(p,q) 7→ 1

2 ∑
x∈X
|p(x)−q(x)|.

The name statistical distance stems from its typical use as a distance measure for probability distri-
butions. For random variables X and Y that have the same range, we will also write SD(X ,Y ), where
the latter should be understood as the statistical distance between their distributions PX and PY .

Sunday 30th September, 2018 D2.2 Application-Oriented MPC Protocols 15



H2020-LEIT-ICT 731583 SODA Deliverable D2.2

1.3 Computing detA and adjA via Random Self-Reducibility

In the context of matrices, the basic idea of Bar-Ilan–Beaver’s inversion protocol is that the map
f : GL(Fp)→ GL(Fp), A 7→ MA is a bijection for any matrix M ∈ GL(Fp). Hence, by sampling a
matrix JGK uniformly at random from GL(Fp), we can open the product JGAK = JGKJAK, without
revealing anything about A (beyond the assertion that A is invertible over GL(Fp), which we anyway
assume is public information).

This approach might be viewed as a random self-reduction [32] (hence the title of this section),
because we reduce (in polynomial time) our input problem instance to a random problem instance that
is statistically independent of the input instance. The main advantage of this “detour” is that the bulk
of the work required to actually solve a linear system can now be performed in the clear.

Up to the opening of GA, our protocol actually coincides with the original inversion protocol
of Bar-Ilan and Beaver. After opening GA, Bar-Ilan–Beaver’s protocol proceeds by computing the
inverse of GA over Fp, however, we must proceed differently because the inverse of σ(GA) over Q
is most probably not directly3 representable in Fp. Instead, we will compute the determinant and
adjugate of GA separately. The details can be found in Protocol 1.

Similar to [21], we assume that there exists a protocol Π0 that is parameterized by n, p ∈ N and
produces (in constant rounds) the pair (JGK,JdetGK), where G is chosen uniformly at random from
GLn(Fp).

Protocol 1 (JadjAK,JdetAK)← AdjDet(JAK), JAK ∈ Fn×n
p , JadjAK ∈ Fn×n

p , JdetAK ∈ Fp

1: Run Protocol Π0 with parameters (n, p), to obtain a matrix JGK ∈ GLn(Fp) and its determinant
JdetGK ∈ Fp.

2: Compute JdK := JdetGK−1.
3: Compute JGAK = JGKJAK, and open this product, i.e., GA← JGAK.
4: Compute adjGA and detGA (both “in the clear”).
5: Output JdetAK := (detGA) · JdK and JadjAK = (adjGA)JGK · JdK.

Remark. Besides hiding A, the matrix G also acts as a generic-rank-profile preconditioner for A [20],
hence if the (non-oblivious) computation of adjGA and detGA is performed via integer-preserving
Gaussian elimination, then pivoting can be safely omitted.

1.3.1 An Improved Protocol for Π0

Although we could instantiate Protocol Π0 with the protocol as given by Cramer and Damgård [21],
we present a slightly improved version in Protocol 2.

Protocol 2 improves upon Cramer and Damgård’s protocol Π0 in three ways: (i) our protocol
samples n fewer random elements because every element of the diagonal of L is set to one, (ii) our
protocol saves some secure multiplications, because the secure computation of the determinant now
only involves a product of n values instead of 2n values, and in our protocol the first row of R is
actually equal to the first row of U (hence it need not be computed), and (iii) the use of the unique LU
decomposition (with ones on L’s diagonal) gives a simpler proof.

Remark. Sampling a secret-shared value from F∗p uniformly at random with perfect correctness can
be achieved as follows. Sample two secret-shared values JaK,JbK ∈ Fp independently and uniformly

3As opposed to an “indirect” representation of some rational number f as a modular image, from which the numerator
and denominator of f can be recovered via rational reconstruction [110, 111].
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Protocol 2 (JRK,JdetRK)← RandMatDet(n), JRK ∈ Fn×n
p , JdetRK ∈ Fp

1: Sample n secret-shared elements from F∗p uniformly at random and independently. We denote
those elements as Jr∗1K, . . . ,Jr∗nK.

2: Sample n2− n secret shared values Jri, jK ∈ Fp uniformly at random and independently, for all
1≤ i, j ≤ n such that i 6= j.

3: Let JLK ∈ Fn×n
p be obtained by placing ones on its diagonal, the value Jri, jK in position i, j for all

i, j such that 2≤ i≤ n and 1≤ j < i, and zeros elsewhere.
4: Let JUK ∈ Fn×n

p be obtained by placing the value Jr∗i K on the diagonal position i, i for all i such
that 1≤ i≤ n, the value Jri, jK in position i, j for all i, j such that 2≤ i≤ n and i < j≤ n, and zeros
elsewhere.

5: Output JRK = JLUK = JLKJUK and JdetRK = ∏
n
i=1Jr∗i K.

at random and open their product z← JabK. If z 6= 0, output JaK and discard JbK. Otherwise, repeat
this procedure (rejection sampling). On the other hand, if p is chosen such that the statistical distance
between random variables uniformly distributed over Fp respectively F∗p is negligible, and we accept
to sacrifice the perfect correctness property, then may of course just sample a random value from Fp.

1.3.2 Analysis

Proposition 3. For all n∈N, Protocol 2 outputs a matrix R which, when viewed as a random variable,
is uniformly distributed over all invertible n×n LU-decomposable matrices.

Proof. Let n ∈ N be arbitrary. Let L 1 be the set of all n× n lower-triangular matrices over Fp with
ones on its diagonal, let U be the set of all invertible n×n upper-triangular matrices over Fp, and let
R be the set of invertible n×n LU-decomposable matrices over Fp.

It follows immediately from the protocol description that L, as a random variable, is uniformly
distributed over L 1. Furthermore, U , as a random variable, is uniformly distributed over U and
independent from L; invertibility of U is guaranteed because the diagonal elements are sampled from
F∗p, hence detU (the product of all diagonal elements) cannot become zero. By Definition 1.1 the map
L 1×U →R, (L,U) 7→ LU = R is a bijection, which proves the claim.

Protocol 1 prescribes G as a matrix that is uniformly distributed over GLn(Fp), whereas Protocol 2
(and similarly, protocol Π0 in [21]), produces a matrix that is uniformly distributed over the set R. As
already noted in [21], this difference does not cause a problem as long as n is negligible compared to
p. Below, we repeat this argument formally.

Corollary 4. Let R be the set of invertible n× n LU-decomposable matrices over Fp and let R
be a random variable uniformly distributed over R. Let G be a random variable uniformly and
independently distributed over GLn(Fp). Then,

SD(R,G)≤ 1−
(

1− 1
p

)n

.

Proof.

SD(R,G) =
1
2 ∑

x∈Mn(Fp)

|PR(x)−PG(x)|= ∑
x∈R

∣∣∣∣ 1
|R|
− 1
|GLn(Fp)|

∣∣∣∣
= 1− |R|

|GLn(Fp)|
≤ 1− |R|

|Mn(Fp)|
= 1−

(
1− 1

p

)n

,
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where the second equality follows because R ⊆ GLn(Fp). (This holds because for any matrix A, the
determinant of A is itself a leading principal minor.) The last equality follows from Proposition 2,
which applies here because Proposition 1 states that a matrix is in R if and only if all its leading
principal minors are nonzero.

1.3.3 Choosing the Field Size

As a necessary condition for correctness of Protocol 1, the results produced by the protocol (the
determinant and elements of the adjugate) should be uniquely representable in the field Fp. When
given an upper bound B on the magnitude of the elements of A, i.e., |ai j| ≤ B for all i, j ∈ [n], then a
(tight) lower bound on p follows immediately from the Hadamard bound:

p≥ 2HadB(n)+1,

where the application of the map x 7→ 2x+1 accommodates for negative numbers and the zero element.
Note that we use here the fact that the Hadamard bound also applies to the elements of the adjugate
of A (which are themselves determinants) with exactly the same parameters as used for bounding the
determinant of A.
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2 Fast Secure Comparison for Medium-Sized Integers and Its Applica-
tion in Binarized Neural Networks

2.1 Introduction

Secure integer comparison has been a primitive of particular interest since the inception of multiparty
computation (MPC). In 1982, even before general multiparty computation had been realized, Yao
introduced the Millionaires’ Problem [113], where two millionaires want to determine who of them
has greater wealth without revealing any information beyond the outcome of this comparison to each
other or to any third party. Secure comparison has been investigated extensively since. A whole range
of solutions is available with every solution aiming for a particular trade-off. Nonetheless, with re-
spect to arithmetic-secret-sharing-based MPC, secure comparison remains among the most expensive
basic operations in terms of round complexity. Hence, for applications that require many compar-
isons, achieving high throughput (important for privacy-preserving data processing applications) or
low latency (crucial for certain applications, like blind auctions for real-time advertisement sales) can
be challenging.

2.1.1 Related Work

Whereas most secure comparison protocols work over finite fields of arbitrary order, Yu [115] presents
a comparison protocol that only works for specifically chosen prime moduli. Although this clearly
poses a restriction in terms of applicability, the main benefit is that the specifically chosen prime
modulus p enables Yu to perform a comparison in a single round of communication in the online
phase (the offline preprocessing phase requires three communication rounds), albeit in a range of size
O(log p). Namely, he chooses p such that the pattern of quadratic residues and non-residues modulo
p coincides with the sign function on a given interval symmetric around zero, which is an idea that
goes back to a protocol of Feige, Killian and Naor [31], who use it to compute the sign of an element
x ∈ [−2,2] in F7. Yu’s comparison protocol for comparing arbitrary elements a,b ∈ Fp essentially
works by breaking up the full-range comparison into several medium-range comparisons of the above
type by performing a digit decomposition.

2.1.2 This Paper

In this paper, we pursue the line of work initiated by Yu [115]. Our main contribution is that we
improve the hidden constant of Yu’s [115] O(log p)-range comparison method. Concretely, we pro-
pose a protocol that, for a fixed prime-length, achieves close to a two-fold increase of the comparison
range (over Yu’s results), while still enjoying a single-round online phase, at the cost of a constant
amount of additional communication and some additional local computations. Also, we present a
two-online-rounds protocol that achieves more than a three-fold increase in the comparison range
when compared to Yu’s approach. In other words, to compare two integers that lie in a given range
(symmetric around zero), the size of the required prime modulus is a constant factor smaller than the
prime required for the protocol from [115]. Keeping the finite-field modulus as small as possible or
within the machine’s word size could be important, for example, in a setting where MPC protocols
run on constrained hardware platforms. On such platforms, the complexity of prime-field arithmetic
(which is directly related to the prime size) can have a significant impact on the runtime performance.
Our protocols can be found in Section 2.5 of this work.

The main idea is to somewhat relax the constraints on the prime modulus p: instead of requiring
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that the Legendre symbols of all elements in the interval [−d,d], for a given positive integer d, coin-
cide with the sign function, we only require this coincidence for most elements (in a specific sense).
Let us, for some fixed prime p, say that there is an error at position x ∈ [−d,d] if

(x
p

)
6= sgn(x). Our

improvement is based on exploiting a “local redundancy” property enjoyed by the sign function that
lets us correct such errors as long as they are sufficiently “sparse”, by means of inspecting also the
Legendre symbols of some neighboring positions and then performing a majority vote.

This new approach raises the question of how to find primes that give rise to increased ranges. In
Section 2.4, we present some results that considerably simplify this search, and in Section 2.7 we give
an explicit list of suitable primes for various bit lengths.

2.1.3 Application: Efficient Neural Network Evaluation in MPC

To demonstrate the practical value of our work, we apply our new comparison protocol to the problem
of securely evaluating a neural network, in which the sign function is used as non-linearity. We use
a binarized multi-layer perceptron (BMLP) for recognizing handwritten digits, as described in [52],
which is trained (in the clear) on the well-known MNIST handwritten-digits data set. We consider an
MPC scenario in which the input images are secret-shared between the players, which then securely
evaluate the BMLP to obtain the estimated digit in secret-shared form.

2.2 Preliminaries

Arithmetic Black Box. We suppose that we are given a secure arithmetic black-box (ABB) func-
tionality that can securely evaluate multiplication and linear forms over the finite field Fp. We write [x]
to mean that we have a residue class x ∈ Fp encrypted under the ABB (e.g. x is secret-shared among a
set of players, or perhaps encrypted under some homomorphic encryption scheme). Abusing notation,
for small x ∈ Fp we will also refer to x as an integer in Z, given as the canonical lift of the residue
class to the integers {−b p

2 c, . . . ,b
p
2 c}.

Sign vs. Greater-or-Equal-to-Zero. The sign function and the GEZ (“greater-than-or-equal-to-
zero”) function are respectively defined as

sgn(z) :=


1 if z > 0,
0 if z = 0,
−1 if z < 0.

GEZ(z) :=

{
1 if z≥ 0,
−1 if z < 0.

Comparing two integers a and b is achieved by evaluating the sign (or GEZ) of their difference a−
b. The sgn function gives rise to a three-way comparison, while the GEZ function corresponds to
two-way comparison. In this paper, we will start our analysis in terms of the sgn function, but for
reasons that will become clear later our protocols evaluate the GEZ function (i.e. achieve two-way
comparison). We will sometimes be a bit sloppy and use the word “sign” also for the GEZ function;
the precise meaning should nonetheless still be clear from its context.

The Legendre symbol. Recall that the Legendre symbol of an integer a is defined as the integer

(
a
p

)
=


0 if a≡ 0 (mod p),
1 if a is a quadratic residue modulo p,

i.e. ∃w such that w2 ≡ a (mod p),
−1 otherwise.
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The Legendre symbol is a completely multiplicative function, i.e.
(a

p

)(b
p

)
=
(ab

p

)
for all a,b ∈ Z. The

equality
(a

p

)
≡ a

p−1
2 (mod p) holds for all primes p and all a ∈ Z, and is known as Euler’s criterion.

The law of quadratic reciprocity asserts that for odd primes p and q,(
p
q

)(
q
p

)
= (−1)

p−1
2

q−1
2 .

Securely evaluating Legendre symbols. In principle, we can securely evaluate the Legendre sym-
bol via Euler’s criterion, which would require O(log p) secure multiplications. The complete multi-
plicativity of the Legendre symbol enables the following constant-rounds protocol for securely eval-
uating the Legendre symbol in the preprocessing model with an single-round online phase. In the
preprocessing phase, we generate a secret-shared pair ([r], [

(r
p

)
]) of a random non-zero class r to-

gether with its Legendre symbol. In the online (input-dependent) phase, we securely multiply [a] · [r],
open the result and then compute [(

a
p

)]
=

(
ar
p

)[(
r
p

)]
.

Note that the security of the protocol requires that a 6≡ 0 (mod p), which should be taken into account
when using this protocol.

Blum primes. A prime p for which p ≡ 3 (mod 4) is called a Blum prime. By Euler’s criterion,
−1 is a quadratic non-residue modulo p if and only if p is a Blum prime. Hence, for any Blum prime
p, the map x 7→

(x
p

)
is an odd function for x ∈ [−bp/2c,bp/2c] (which follows immediately from the

multiplicativity property of the Legendre symbol), i.e. it enjoys the same symmetry around the origin
as the sign function.

2.3 Evaluating the Sign Function using Legendre Symbols

2.3.1 A Redundancy Property of the Sign Function

In this section we show that the sign function enjoys a “local redundancy” property, which lets us
correct sign-flip errors by means of majority-decoding as long as those errors occur sparsely (in a
sense defined below).

Definition 2.1. Let k ≥ 0 be an integer, and let T = [t1, t2] be an interval of integers with t2− t1 ≥
2k+1. We say that a function e : T → {0,1} is an error function on T admissible for k if e(x) = 0
for all x ∈ [−(k+1),k+1]∩T and if ∑

k
i=−k e(y+ i)≤ k holds for all y ∈ [t1 + k, t2− k].

Lemma 5. Let k and T be as in Definition 2.1, and let e be an error function on T admissible for k.
Then,

sgn
( k

∑
i=−k

(−1)e(x+i)sgn(x+ i)
)
= sgn(x)

holds for all x ∈ [t1 + k, t2− k].

The proof will clarify why we require in Definition 2.1 that an admissible error function e(x) has
an “error-free” region around x= 0; informally speaking, the reason is that the sign function undergoes
its sign change at x = 0, which means that there is “less room” for errors under majority-decoding in
this region.
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Proof. We will prove the statement for T = [−a,a] where a≥ k is any integer. This implies the claim
for any subinterval of T of cardinality at least 2k+ 1. Note that because of symmetry (in the sign
function as well as in the definition of an admissible error function), it suffices to prove the statement
for x≥ 0. We make a case distinction on x. First, suppose that x = 0. Because x = 0 ⇐⇒ sgn(x) = 0,
we prove this case as ∑

k
i=−k(−1)e(i)sgn(i) =∑

k
i=−k sgn(i) = 0, where the first equality follows because

e is admissible for k and the second equality follows from the fact that summing an odd function over
an interval symmetric around zero gives the value zero.

Second, suppose that x > k. We have

k

∑
i=−k

(−1)e(x+i)sgn(x+ i) =
k

∑
i=−k

(−1)e(x+i) > 0,

where the equality follows because sgn(x+ i) = 1 for all i∈ [−k,k] and the inequality follows because
e is admissible for k.

For the third (and final) case, suppose that x ∈ [1,k]. We have

k

∑
i=−k

(−1)e(x+i)sgn(x+ i) =
k−x+1

∑
i=−k

sgn(x+ i)+
k

∑
i′=k−x+2

(−1)e(x+i′)sgn(x+ i′)

=
k+1

∑
j=x−k

sgn( j)+
k+x

∑
j′=k+2

(−1)e( j′)sgn( j′)

= 1+ x+
k+x

∑
j′=k+2

(−1)e( j′)

≥ (1+ x)+(1− x) = 2

2.3.2 Counting admissible error functions

How many admissible error functions can there be on a given set T and for a given integer k? For the
case k = 1, we have the following result.

Proposition 6. Let T := [−t, t] with t ≥ 2. Let E1 be the set of all error functions on T admissible
for k = 1. Then,

|E1| ≤ 22λ (t−2), λ ≈ 0.55146 . . .

The proof will make use of the following lemma, which is well known.

Lemma 7 (“Volume Bound for Hamming Balls”). Let Sn be the set of all bit sequences of length n
produced using by concatenating bits from a binary source X. Then, it holds that

2H(X)n−o(n) ≤ |Sn| ≤ 2H(X)n

where H(X) denotes the Shannon entropy of X.

In Figure 1, we show a finite state machine (FSM) that defines a language of binary strings such
that every string in the language has the following property: for every window of three consecutive
bit positions, at most one position will be “1”. If we impose a probability distribution on the outgoing
edges of state (a), then we can view the FSM as a random binary source, which lets us compute the
entropy which we need to apply the above lemma.
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astart b c

1

0

0

0

Figure 1: A finite state machine that generates binary strings with the property that for every window
of three consecutive bit positions, at most one position will be “1”.

Proposition 8. The average per-bit entropy H(X) of a random binary source X that produces bits
according to the FSM depicted in Figure 1, where the outgoing path at state (a) (“0” or “1”) is
chosen uniformly at random, is given by

H(X) = lim
n→∞

H(X1X2 . . .Xn)

n

= log2
1
3

(
1+ 3

√
1
2

(
29−3

√
93
)
+

3

√
1
2

(
29+3

√
93
))

≈ 0.55146 . . .

Proof. As proved by Shannon [95], we can calculate the average per-symbol entropy of a FSM as the
logarithm of the largest real root of the equation

det(z−1D− I) = 0,

where D is the transition matrix of the FSM. We can easily draw up the transition matrix from Figure 1:

D =

1 1 0
0 0 1
1 0 0

 .
Hence, we need to solve

det

z−1−1 z−1 0
0 −1 z−1

z−1 0 −1

= 0 ⇐⇒ 1+ z2− z3

z3 = 0

We now claim that this equation has one real and two complex roots, where the real root is the expres-
sion inside the logarithm in the proposition, which should be straightforward to verify.

Proof (of Proposition 6). For all error functions e ∈ E1, it holds by definition that e(x) = 0 for x ∈
[−2,2]. We may choose the function values on remaining positions, that is, the intervals [3, t] and
[−t,−3], freely under the constraint that e(x− 1) + e(x) + e(x+ 1) ≤ 1 for all x ∈ [−t + 1, t − 1].
In each such interval, there are, according to Lemma 7 and Proposition 8, N ≤ 2λ (t−2) choices, with
λ :=H(X) the entropy of the FSM (when viewed as a random source) in Figure 1. Because the choices
for the two intervals are independent, in total there are N2 choices for e, hence |E1| ≤ 22λ (t−2).
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2.3.3 The Legendre Symbol as a “Noisy” Sign

Suppose that p is a Blum prime. We can view the Legendre symbol
(x

p

)
for x∈ Fp as a “noisy” version

of the sign of x, i.e. (
x
p

)
= (−1)e(x)sgn(x), (1)

where e(x) is the error function that is determined by p. If we now plug (1) into Lemma 5, we
can conclude that we may compute the sign of x as the sign of the sum of the Legendre symbols of
positions in a length-(2k+1) interval centered at x, for all x ∈ [t1 + k, t2− k], if e is an error function
on the interval [t1, t2] admissible for k.

Because p is a Blum prime, the pattern of Legendre symbols has odd symmetry, which implies
that we can w.l.o.g. define T such that it is symmetric around zero. A natural question, for a given
Blum prime p, non-negative integer k, and T := [−d,d] for a positive integer d ≥ k, is how large d
can maximally be such that e is an error function on T that is admissible for k. This gives rise to the
following equivalent definition, in which we leave the error function implicit.

Definition 2.2. Let k be a non-negative integer, and let p > 2k+ 1 be a Blum prime. We define the
k-range of p, denoted dk(p), to be the largest integer d such that for all x with 1≤ x≤ d it holds that

k

∑
i=−k

(
x+ i

p

)
> 0, (2)

and we set dk(p) := 0 if no such d exists.

Note that d0(p) tells us the maximum size of Yu’s “Consecutive Quadratic Residues and Non-
Residues Sign Module” for a given prime p, i.e. in Yu’s terminology and notation: a Blum prime p
qualifies for ±`-CQRN for all `≤ d0(p).

Lower bound on dk(p). If p > 2k+1 and d0(p)> k, then dk(p)≥ d0(p).

Example. Let us illustrate Definition 2.2 by means of an example. Let us take p = 23; note that this
is a Blum prime. Below, we have evaluated the first 16 Legendre symbols.

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 . . .(x
p

)
0 1 1 1 1 −1 1 −1 1 1 −1 −1 1 1 −1 −1

We can now read off that d0(23) = 4. Furthermore, it is easy to verify that d1(23) = 5, d2(23) = 8,
and d3(23) = 7.

2.3.4 Avoiding Zero by Restricting to Odd Positions

As mentioned in the preliminaries, if we use the single-online-round protocol for securely evaluating
the Legendre symbol, we may not evaluate the Legendre symbol on the zero element. A simple trick
to avoid zero (also used in [115]) is to restrict to evaluation of odd inputs by using the map x 7→ 2x+1.
Note that this implies that we cannot compute sgn(x) using the single-online-round protocol; instead
we will evaluate GEZ(x). Also note that Definition 2.2 is not compatible with the “zero-avoidance”
trick; we need to slightly update Definition 2.2 by incorporating the map x 7→ 2x+1, which gives rise
to the following definition.
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Definition 2.3. Let k be a non-negative integer, and let p > 2k+1 be a Blum prime. We define d∗k (p)
as the largest integer d such that for all x with 1≤ x≤ d it holds that

k

∑
i=−k

(
2(x+ i)+1

p

)
> 0, (3)

and we set d∗k (p) := 0 if no such d exists.

Note that for any Blum prime p for which d0(p)> 1 (which implies that d0(p) is even), it is easy
to see that it holds that d∗0(p) = 1

2 d0(p)− 1. For k > 0, such simple relations do not seem to exist.
This means, for example, that a prime p that gives rise to a high value for d1(p), does not necessarily
give a high value for d∗1(p), and vice versa.

2.3.5 Bounds on d0(p)

The value d0(p) can be interpreted as the position just before the appearance of the first quadratic
non-residue. Let n1(p) denote the smallest quadratic non-residue. Finding bounds on n1(p) is a well-
known problem in number theory, with important contributions from Polyà, Vinogradov and Burgess,
among others. The best explicit upper bound that is currently known (for p a Blum prime) is due to
Treviño [103]:

d0(p)+1 = n1(p)≤ 1.1 4
√

p log p.

Graham and Ringrose [44] proved an unconditional asymptotic lower bound (improving on a previous
result by, independently,4 Fridlender [36] and Salié [93]), namely, that there exist infinitely many
primes for which

d0(p) = Ω(log(p) · log loglog p).

Lamzouri et al. [69] prove that conditional on the Generalized Riemann Hypothesis, for all primes
p≥ 5 it holds that

d0(p)+1 = n1(p)< (log p)2.

2.3.6 Bounds on d1(p)

Hudson [53] proves an upper bound on the least pair of quadratic non-residues. Formally, let n2(p)
be the smallest value such that n2(p) and n2(p)+1 are quadratic non-residues. For k = 1, it must hold
that d1(p) < n2(p), because an “error pattern” consisting of two consecutive quadratic non-residues
(such that n2(p) ∈ [1,(p− 3)/2]) cannot be corrected using a majority vote in a window of length
2k+1 = 3. Hudson’s bound is as follows. For every p≥ 5 we have that

d1(p)< n2(p)≤ (n1(p)−1)q2,

where q2 is the second smallest prime that is a quadratic non-residue modulo p. Hildebrand [49] also
proves an upper bound on n2(p):

d1(p)< n2(p)≤ p1/(4
√

e)+ε p≥ p0(ε),

for every ε > 0 and p0(ε) a sufficiently large constant depending on ε .
Sun [98] gives a construction for generating all elements n in Fp such that n and n+1 are quadratic

non-residues.
4Ankeny [3] attributes this result to Chowla, but does not provide a reference.
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Lemma 9 ([98]). Let p be an odd prime and let g be a primitive root of p. Then,

U :=
{

n :
(

n
p

)
=

(
n+1

p

)
=−1

}
=

{
uk : uk ≡

(g2k−1−1)2

4g2k−1 mod p, uk ∈ Fp, k = 1, . . . ,
⌊

p−1
4

⌋}

We can interpret this lemma as giving a collection of upper bounds on d1(p), i.e. d1(p)< n2(p)≤
uk holds for every k = 1, . . . ,b(p−1)/4c.

An error pattern that consists of two quadratic non-residues that are separated by one arbitrary
position can also not be corrected using a majority vote in a window of length 2k+1 = 3. Inspired by
Sun, we prove the following lemma.

Lemma 10. Let p be a Blum prime, let b :=
((2

p

)
+1
)
/2 ∈ {0,1} and let g be a primitive root of p.

Then,

V :=
{

n :
(

n
p

)
=

(
n+2

p

)
=−1

}
=

{
vk : vk ≡

(g2k−b−1)2

2g2k−b mod p, vk ∈ Fp, k = 1, . . . ,(p−3)/4
}
.

Also this lemma can be viewed as giving a collection of upper bounds on d1(p). If
(n

p

)
=
(n+2

p

)
=

−1, then a decoding error (under majority decoding with k = 1) will occur at position n+1, hence we
have that d1(p)≤ vk holds (instead of strict inequality) for every k = 1, . . . ,(p−3)/4.

Proof. Let χ(x) :=
(x

p

)
for all x ∈ Fp. Jacobsthal [56] proves that for p a Blum prime,

∣∣{n : χ(n) = χ(n+2) =−1, χ(n+1) = 1, n ∈ Fp}
∣∣= p−1+2

(2
p

)
8

,

and

∣∣{n : χ(n) = χ(n+1) = χ(n+2) =−1, n ∈ Fp}
∣∣= p−5−2

(2
p

)
8

.

Hence, by summing the cardinalities of the above sets, we get that∣∣{n : χ(n) = χ(n+2) =−1,n ∈ Fp}
∣∣= p−3

4
.

For j = 1,2, . . . ,(p−3)/2, let r j ≡ (g j−1)2/(2g j) mod p. Then, r j+2≡ (g j+1)2/(2g j) mod p. It
now follows that χ(r j)= χ(r j+2)= (−1) jχ(2) for all j = 1,2, . . . ,(p−3)/2. Hence, χ(r2k−(χ(2)+1)/2)=
χ(r2k−(χ(2)+1)/2 +2) =−1 for all k = 1,2, . . . ,(p−3)/4.

It remains to prove that rs 6= rt mod p for all s, t ∈ [(p−3)/2] with t 6= s; for this part we can re-
use Sun’s proof technique used in the proof of Lemma 9. Namely, for all s, t ∈ [(p−3)/2] with t 6= s,
we have that gs+t 6≡ 1 mod p (since g is a primitive root), which implies that gs−gt 6≡ (gs−gt)/gs+t

mod p. Hence, gs + g−s 6≡ gt + g−t mod p from which we obtain that rs 6≡ rt mod p. We can now
conclude that

{n : χ(n) = χ(n+2) =−1,n ∈ Fp}= {r2k−b : k ∈ [(p−3)/4]},

and the claim follows.
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2.4 Finding a Prime for a Desired k-Range

In order to find a prime that, for given integers k and Dk, gives rise to dk(p)≥Dk, we could in principle
take a “brute force” approach by letting a computer run exhaustively through the primes in increasing
order, compute dk(p) explicitly for each prime, and stop when dk(p) ≥ Dk. Although this approach
works for small values of k and Dk (say for D1 < 200), for larger Dk this will become intractable.

A better approach is to exploit the multiplicative structure of the Legendre symbol, the law of
quadratic reciprocity and the Chinese Remainder Theorem. We will first study the problem for the
case k = 0 and then extend the method, first to k = 1 and finally to arbitrary k.

2.4.1 Finding Primes with High d0(p)

Recall that finding a prime p′ such that d0(p′)≥ D, for some D, means that p′ must be a Blum prime
such that the elements 1, . . . ,D are quadratic residues modulo p′. By the complete multiplicativity of
the Legendre symbol, it suffices to find a Blum prime p such that all prime factors of the integers in
[D] are quadratic residues modulo p.

We will represent these constraints (via the law of quadratic reciprocity) as a system of simultane-
ous linear congruences, because we can efficiently compute the smallest integer that satisfies such a
system of congruences via the constructive proof of the Chinese Remainder Theorem (i.e. via Bézout’s
identity). We note that [115] also uses this approach to find primes for which d0(p) is high.

Let q be an odd prime. Then, it holds that(
q
p

)
=

(
−p
q

)
.

Proof.
(q

p

)
=
(p

q

)−1
(−1)

p−1
2

q−1
2 =

(p
q

)
(−1)

q−1
2 =

(p
q

)(−1
q

)
=
(−p

q

)
, where the first equality holds by

the law of quadratic reciprocity, the second holds because p is a Blum prime, the third follows from
Euler’s criterion and the fourth follows from the multiplicativity property of the Legendre symbol.

Let Rq := {r ∈ {0, . . . ,q−1} :
(−r

q

)
= 1}. Then, q is a quadratic residue modulo p if and only if

∃r ∈Rq such that p≡ r (mod q). (4)

Let q1, . . . ,qm denote all odd prime factors that occur in the integers in [D]. This gives rise to the
following system of simultaneous linear congruences, in which x represents the unknown integer:

x ≡ 7 mod 8 (guarantees that
(−1

x

)
=−1 and

(2
x

)
= 1),

x ≡ a1 mod q1 a1 ∈Rq1 ,
x ≡ a2 mod q2 a2 ∈Rq2 ,

...
...

...
x ≡ am mod qm am ∈Rqm .

(5)

Note that the coefficients ai for all i∈ [m] can be chosen freely. Each choice for the vector (a1, . . . ,am)
is in one-to-one correspondence with a unique arithmetic progression of solutions to the above system
of congruences, i.e. x,x+Q,x+2Q, . . . where Q := 8∏i∈[m] qi. Linnik’s theorem [73] (combined with
Xylouris’ bound [112]) asserts that there will be a prime in this arithmetic progression whose size is
bounded as O(Q5).
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Finding the smallest such prime. While making an arbitrary choice for (a1, . . . ,am) and then find-
ing some prime that satisfies the above system is relatively easy (via the constructive proof of the
CRT), finding the smallest prime that satisfies the above system is a (much) harder task, as it involves
searching over the set of all choices for (a1, . . . ,am), whose cardinality is exponential in m.

An alternative approach to find the smallest prime that satisfies the system of simultaneous con-
gruences is by enumeration. Each congruence in Equation (5) gives rise to a set of arithmetic progres-
sions, with the property that every integer solution to (5) will lie in one of the arithmetic progressions
in the set. Hence, instead of enumerating the (odd) integers, we can enumerate through such a set of
arithmetic progressions.

For example, the second line in (5) corresponds to the following set of arithmetic progressions:

{k ·q1 +a1 : a1 ∈Rq1 ,k ∈ N}.

By the CRT, we can also “intersect” congruences, i.e. two congruences

x ≡ a mod p, a ∈ A
x ≡ b mod q, b ∈ B

can be combined as
x ≡ c mod `, c ∈C

with ` := lcm(p,q) and

C := (A+{0, p, . . . ,(`/p−1)p})∩ (B+{0,q, . . . ,(`/q−1)q}), (6)

where ‘+’ denotes Minkowski addition. Note that we can intersect several congruences by recursively
applying the above binary intersection operation.

2.4.2 Finding Primes with High d1(p)

For k > 0, to find p with dk(p) ≥ D′ for some positive integer D′, p no longer has to satisfy all
congruences; instead, some subsets suffice. For example, for d1(p)≥ 6 we need

(2
p

)
= 1 and at least

one of
(5

p

)
= 1 or

(6
p

)
=
(2

p

)(3
p

)
=
(3

p

)
= 1, otherwise Equation (2) fails to hold for a = 5. In order

for Equation (2) to hold, we have one set of congruences for every length-(2k + 1) subinterval of
{−k, . . . ,d}; even for k = 1 this quickly grows prohibitively large for non-trivial lower bounds D on
dk(p). While for k > 0 the density of primes p satisfying dk(p) ≥ D is greater than for k = 0, the
search becomes a lot more expensive.

For k = 1, we simplify our search for p with d1(p)≥ D1 with an extra condition: we also require
d0(p) ≥ D0 where D1 ≤ (D0)

2. This allows a simpler equivalent condition, where we only get a set
of congruences for certain pairs of primes, instead of for every length-3 subinterval of {−k, . . . ,d}.

Definition 2.4. Let D0,D1 be non-negative integers with D0 <D1≤ (D0)
2. Let q,q′ be distinct primes.

We say that {q,q′} is a related pair on (D0,D1] if D0 < q,q′ ≤ D1 and there exist positive integers
x,y < D0 such that |xq− yq′| ≤ 2 and max{xq,yq′} ≤ D1.

Proposition 11. Let D0,D1 be non-negative integers with D0 < D1 ≤ (D0)
2, and let p be a Blum

prime with d0(p) ≥ D0. Then d1(p) ≥ D1− 1 if and only if the following condition holds: for every
related pair of primes {q,q′} on (D0,D1] it holds that

(q
p

)
= 1∨

(q′
p

)
= 1.
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Proof. Let a be any positive integer such that a ≤ D1. First, we show that
(a

p

)
= −1 if and only if a

has a prime factor q > D0 and
(q

p

)
=−1. Suppose a has a prime factor q > D0 with

(q
p

)
=−1. Since

a
q < a

D0
≤ D1

D0
≤ D0, we have

(a/q
p

)
= 1, hence

(a
p

)
= −1. If a does not have a prime factor q > D0

with
(q

p

)
=−1, then taking any prime factor q′|a, it must hold that q′ > D0, in which case

(q′
p

)
= 1 by

assumption, or q′ ≤ D0, in which case
(q′

p

)
= 1 by d0(p)≥ D0.

We now finish the proof by showing d1(p)< D1−1 if and only if there is some related pair q,q′

such that
(q

p

)
=
(q′

p

)
= −1. We have d1(p) < D1− 1 if and only if there exists an integer x such that

1 < x ≤ D1− 1 and
(x−1

p

)
+
(x

p

)
+
(x+1

p

)
< 0. This latter inequality holds if and only if at least two

of {x− 1,x,x+ 1} have Legendre symbol −1. By the above, this holds if and only if two of these
numbers have respective prime factors q,q′ > D0 and

(q
p

)
=
(q′

p

)
= −1. For these q,q′, we have that

they constitute a related pair, since they each have a multiple in {x− 1,x,x+ 1} and x+ 1 ≤ D1.
Conversely, for any related pair there exists such an interval {x−1,x,x+1} with 1 < x≤D1−1.

Proposition 11 gives sufficient conditions for d1(p) > D1− 1 in terms of related pairs of primes
that have to satisfy certain congruences. If we want to include those congruences in the system of
simultaneous congruences as shown in Equation (5), we need to represent them in the same form. For
every pair of related primes {q,q′}, the condition that

(q
p

)
= 1∨

(q′
p

)
= 1 in Proposition 11 corresponds

to taking the union of the associated residue sets Rq and R ′q of the related primes q and q′. That is,
let ` := lcm(q,q′), then

Rq,q′ := (Rq +{0,q, . . . ,(`/q−1)q})∪ (R ′q +{0,q′, . . . ,(`/q′−1)q′}),

where ‘+’ denotes Minkowski addition. We can now express the related-primes congruence as

x≡ b mod ` b ∈Rq,q′ .

Since this congruence has exactly the same form as the other congruences in (5), we can also take
intersections (using Equation (6)) between a related-primes congruence Rq,q′ and another congruence.

2.4.3 Finding Primes with High dk(p)

We can naturally extend the approach for searching primes with high d1(p) to an approach for finding
primes with high dk(p) for k > 1. This involves imposing constraints on sets of k+1 distinct primes
that are related in a suitably defined way. Note, however, that the use of this for high k is limited,
given that we still constrain Dk ≤ (D0)

2.

Definition 2.5. Let D0,Dk be non-negative integers with D0 < Dk ≤ (D0)
2. Let Q = {q0, . . . ,qk} be a

set of k+1 distinct primes. We say that Q is a related set on (D0,Dk] if Q⊆ (D0,Dk] and there exist
positive integers x0, . . . ,xk < D0 such that:

1. for any i with 0≤ i≤ k we have xiqi ≤ Dk

2. for any i, j with 0≤ i < j ≤ k it holds that |xiqi− x jq j| ≤ 2k

Proposition 12. Let D0,Dk be non-negative integers with D0 < Dk ≤ (D0)
2, and let p be a Blum

prime with d0(p) ≥ D0. Then dk(p) ≥ Dk− k if and only if the following condition holds: for every
set Q of k+1 distinct primes related on (D0,Dk], it holds that there exists some q ∈ Q with

(q
p

)
= 1.

The proof goes along the same lines as that of Proposition 11.
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Remark. Although we have presented Proposition 12 for general k, in practice we shall mostly use
k ∈ {1,2}. For larger k, the restriction D0 < Dk ≤ (D0)

2 causes the conditions for d0(p) ≥ D0 to
dominate the search.

2.4.4 Finding Primes with High d∗k (p)

We can also apply the method from Section 2.4.3 to find p with large d∗k (p), but the search proce-
dure needs to be modified slightly. We present the appropriate modifications to the statements of
Section 2.4.3.

Definition 2.6. Let D0,Dk be non-negative integers with D0 < Dk ≤ (D0)
2. Let Q = {q0, . . . ,qk} be

a set of k+ 1 distinct primes. We say that Q is a ∗-related set on (D0,Dk] if Q ⊆ (D0,Dk] and there
exist positive integers x0, . . . ,xk < D0 such that:

1. for any i with 0≤ i≤ k we have xiqi ≤ Dk

2. for any i, j with 0≤ i < j ≤ k it holds that |xiqi− x jq j| ∈ {2,4,6, . . . ,4k}

Proposition 13. Let D0,Dk be non-negative integers with D0 <Dk ≤ (D0)
2, and let p be a Blum prime

with d∗0(p)≥ 1
2 D0. Then d∗k (p)≥ 1

2 Dk−k if and only if the following condition holds: for every set Q
of k+1 distinct primes ∗-related on (D0,Dk], it holds that there exists some q ∈ Q with

(q
p

)
= 1.

2.5 Secure Protocols for GEZ

In this section we present three protocols for evaluating the GEZ function, for k = 1 and k = 2.
Note that these immediately imply comparison protocols; from the triangle inequality it follows that
correctness for comparison is guaranteed if both inputs lie in [−d/2,d/2], where [−d,d] is the input
range of the GEZ protocol. Throughout this section, we suppose that p is a Blum prime.

We first describe a protocol for securely evaluating the Legendre symbol, which we call Legendre.
We describe the protocol in terms of black-box invocations of subprotocols for sampling a random
element from F∗p (denoted as RandomElem(F∗p)) and for sampling a random bit {0,1} ⊂ Fp called
RandomBit.

Protocol 3 Legendre([x])

Offline Phase
1: [a]← RandomElem(F∗p)
2: [b]← RandomBit()
3: [s]← 2[b]−1
4: [r]← [s] · [a2]
5: return ([r], [s])

Online Phase
6: c← [x] · [r]
7: [z]←

(c
p

)
· [s]

8: return [z]
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2.5.1 A Secure Medium-Range GEZ Protocol for k = 1

In our protocol for k = 1, shown as Protocol 4, we compute the sign of the sum of the Legendre
symbols by means of the multivariate polynomial

f (x,y,z) =
x+ y+ z− xyz

2
,

which can be evaluated securely in two rounds using ordinary secure multiplication. It is easy to verify
that f correctly computes the sign of the sum of x,y,z ∈ {−1,+1}.

Protocol 4 SimpleGEZ1([a]), |a| ≤ d∗1(p)

1: [x]← Legendre(2[a]−1), [y]← Legendre(2[a]+1), [z]← Legendre(2[a]+3)
2: [s]← ([x]+ [y]+ [z]− [x][y][z])/2
3: return [s]

Decreasing the round complexity in the online phase. Protocol SimpleGEZ1 requires three rounds
in the online phase. We can bring this down to a single round by premultiplying the random Legendre
symbols produced in the offline phase of the Legendre protocol. This is shown in Protocol 5. The
random bit protocol has been concretely instantiated in the offline phase of Protocol 5 to show that
the product of the three random Legendre symbols can be computed in parallel to the preparation of
their corresponding random elements. The offline phase requires two rounds in addition to the round
complexity of securely sampling random elements of F∗p.

Protocol 5 SingleRoundGEZ1([a]), |a| ≤ d∗1(p)

Offline Phase
1: for i ∈ {1,2,3} do [ti]← RandomElem(F∗p); [ui]← RandomElem(F∗p)
2: for i ∈ {1,2,3} do [vi]← [ti] · [ti]; wi← [ui] · [ui]

[m]← [u1] · [u2]

3: for i ∈ {1,2,3} do [ri]← [vi] · [ui] ·w−1/2
i ; [si]← [ui] ·w−1/2

i

[n]← [m] · [u3] ·∏3
i=1 w−1/2

i

4: return ([r1], [s1], [r2], [s2], [r3], [s3], [n])

Online Phase
5: for i ∈ {1,2,3} do ci← (2[a]−1+2i) · [ri]

6: return 2−1
(

∑
3
i=1[si] ·

(ci
p

)
− [n] ·∏3

i=1
(ci

p

))

2.5.2 A Secure Medium-Range GEZ Protocol for k = 2

In our protocol for k = 2, shown as Protocol 6, we compute the sign of the sum of the five Legendre
symbols by means of another invocation of Legendre. In the latter (outer) invocation of Legendre, we
do not need to apply the x 7→ 2x+1 map because we sum an odd number of values in {−1,+1} which
cannot become zero. Note that this requires that d0(p)≥ 5 for correctness of the protocol.
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Protocol 6 GEZ2([a]), |a| ≤ d∗2(p), d0(p)≥ 5

1: [x1]← Legendre(2[a]−3), [x2]← Legendre(2[a]−1), [x3]← Legendre(2[a]+1)
[x4]← Legendre(2[a]+3), [x5]← Legendre(2[a]+5)

2: [s]← Legendre([x1]+ [x2]+ [x3]+ [x4]+ [x5])
3: return [s]

2.6 Application: Fast Neural Network Evaluation in MPC

In this section we demonstrate the usefulness of our secure sign evaluation technique for securely
evaluating a neural network.

2.6.1 A Binarized Multi-Layer Perceptron for MNIST

As a basis for our experiments, we take the binarized multi-layer perceptron (BMLP) as described
in [52] for recognizing handwritten digits from the well-known MNIST benchmark data set. This
network uses the sign function as its non-linearity, and is designed to be evaluated using integer
arithmetic, which allows for a natural MPC implementation.

Let B := [0,255] ⊂ Z. The MNIST data set contains images of 28-by-28 pixels, where the in-
tensity of each pixel is represented by an integer from the interval B (a zero represents black, 255
represents white, and the values in between represent shades of gray). In the BMLP described in [52],
an input image is represented as a byte vector x∈B784. Note that by reshaping a two-dimensional im-
age into a (one-dimensional) vector the spatial structure is lost, which is not a problem in the context
of a MLP, as opposed to, e.g. a convolutional neural network.

Let n ∈ N represent the number of neurons per layer. The BMLP as described in [52] consists of
four layers, and uses n = 4096. We view each layer Li, for all i ∈ [1,4], as a map between an input and
output vector:

L1 : B784 → {−1,+1}n,
Li : {−1,+1}n → {−1,+1}n, i ∈ {2,3}
L4 : {−1,+1}n → Z10.

Let k1 = k2 = k3 = m2 = m3 = m4 = n and k4 = 10 and m1 = 784. In [52], the output of Li is
computed as

Li(x) :=

{
Sign(BatchNormki

Θi
(Wix+bi)), i ∈ {1,2,3}

BatchNormki
Θi
(Wix+bi) i = 4.

Here Wi ∈ {−1,+1}ki×mi is a matrix of weights, and bi ∈ Zki is a vector of bias values. The function
BatchNorm, which applies batch normalization element-wise, is defined as

BatchNorm`
Θi

: Z` → Z`

(x1, . . . ,x`) 7→ ( fΘi,1(x1), . . . , fΘi,`(x`))

where Θi := (µ i, σ̃ i,γ i,β i) are the batch norm parameters for the ith layer: µ i = (µi,1, . . . ,µi,`), σ̃ i =
(σ̃i, j) j∈[1,`], γ = (γi, j) j∈[1,`], and β = (βi, j) j∈[1,`], and

fΘi, j(x) := γi, j
(x−µi, j

σ̃i, j

)
+βi, j.
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The function Sign applies the GEZ function element-wise,

Sign : Zn → {−1,+1}n

(x1, . . . ,xn) 7→ (GEZ(x1), . . . ,GEZ(xn)).

To obtain the final output of the BMLP, which is an integer y ∈ [0,9], we apply an (oblivious)
argmax operation to the output of L4:

y := argmaxL4(L3(L2(L1(x)))).

2.6.2 Eliminating Redundant Parts of Batch Normalization

In layers 1, 2 and 3, the Sign function is applied directly to the output of the BatchNorm function.
Because the sign function is invariant to multiplying its input by a positive scalar, the BatchNorm
function might perform some operations that are immediately undone by the sign function. Indeed,
it actually turns out that the BatchNorm function (when followed by the Sign function) reduces to an
additional bias term; the authors of [52] seem to have overlooked this. Formally,

fi(x) = γi
(x−µi

σ̃i

)
+βi = γi

((
x−µi

σ̃i

)
+

βi

γi

)
=

γi

σ̃i

(
x−µi +

βiσ̃i

γi

)
,

GEZ( fi(x)) = GEZ

(
x−µi +

βiσ̃i

γi

)
, γi, σ̃i > 0.

Hence, we update the bias vector in all layers except the last as follows,

b′i := bi−µ i +
β iσ̃ i

γ i

where all operations (addition, subtraction, multiplication, and division) in the above expression are
performed element-wise. With this modification, evaluation of the BMLP network simplifies to

Li(x) =

{
Sign(Wix+b′i)), i ∈ {1,2,3}
BatchNormki

Θi
(Wix+bi) i = 4.

2.6.3 The Parameter n vs. the Input Range of our Sign Protocol

We want to use GEZ2 with a Blum prime modulus not exceeding 64-bit that gives rise to the largest
known value for d∗2(p), which is, at the time of writing the prime p = 13835556230699448671 for
which d∗2(p) = 493.

For layer L1, the magnitudes of the elements in the vector W1x+b′1 for some image x ∈B784 will
typically be way too large compared to the input range on which our medium-range sign protocol
guarantees a correct answer. Hence, for L1 we will apply an “off-the-shelf” large-range sign protocol,
such as Toft’s comparison protocol [101].

For layers L2 and L3 we apply Protocol GEZ2. Also for these layers, however, there seems to be a
mismatch between the input range of GEZ2 on which it guarantees correctness, i.e. [−493,493], and
the magnitudes of the elements in the vector Wiy+ b′i for i ∈ {3,4}, where y ∈ {−1,+1}n. The first
term in this sum (the vector Wiy), can have elements with magnitude equal to n in the worst case, and
n = 4096� 493 = d∗2(p).

Nonetheless, the distribution of values in the vector Wiy+b′i for all i ∈ {2,3} is strongly concen-
trated around zero, hence we will just ignore the fact that GEZ2 will be invoked a number of times
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Table 2: Classification performance of the BMLP on 10,000 MNIST test images

Full-Range Sign GEZ2

Number of misclassifications 248 239
Error rate 0.0248 0.0239

on values outside the range for which it guarantees correctness. As we show quantitatively in Ta-
ble 2, this does not significantly impact the classification performance compared to a network where
the full-range sign protocol is also used in layers L2 and L3. (Surprisingly, using GEZ2 even slightly
improves the performance on this particular test set.)

2.6.4 Training the Network

We have trained the BMLP on a GPU using Courbariaux’ original implementation (described in [52])
which is publicly available on GitHub.

2.6.5 Experimental Results (Neural Network Evaluation)

We have implemented the neural network in MPyC, a Python framework for prototyping MPC pro-
tocols. In MPyC in three-player mode on a Intel four-core 4th generation Core i7 3.6 GHz, with all
players running on the same machine, secret-sharing the parameters and evaluating the network took
3 minutes and 38 seconds, where we note that MPyC is Python-based and not optimized for runtime
performance. Evaluation time in an actual deployment will depend on the MPC framework, CPU
speed, network latency and throughput.

We have implemented an identical non-MPC version in Python (including a non-MPC implemen-
tation of GEZ2 which produces exactly the same errors outside its input range [−493,493]) to measure
the classification error on 10,000 test images; those results are shown in Table 2.

2.7 Some Suitable Primes for Our Protocols

Table 3 shows results of our search for primes that give rise to as high as possible values of d∗1(p) and
d∗2(p). Table 4 shows primes that give rise to as high as possible values of d0(p), d1(p) and d2(p).
The sequence corresponding to d0(p) coincides with sequence A002223 from Sloane’s Encyclopedia
of Integer Sequences, and has been taken from [75].
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Table 3: Sequence of primes in increasing order (and their bit-lengths `) for which d∗k (p) is strictly
increasing, for k ∈ {1,2}. In the subtables for d∗1(p) and d∗2(p), primes below the separating lines have
been found via our sieving method, which means that there could exist smaller primes (missed by the
sieving method) that give rise to the same or higher values of d∗1(p) resp. d∗2(p). For all other primes
(i.e. all primes listed except those found by sieving), it holds that the prime is the smallest possible for
a given d∗k (p).

` p d∗1(p)

5 23 1
6 47 4
7 83 5
8 131 7
8 239 8
8 251 14

10 1019 16
11 1091 24
13 4259 30
14 10331 33
14 12011 34
17 74051 42
17 96851 44
19 420731 47
20 831899 52
20 878099 53
20 954971 68
23 5317259 78
25 19127891 79
25 31585979 94
28 140258219 98
30 697955579 104
31 1452130811 112
31 1919592419 115
33 4323344819 116
33 4499001491 117
33 6024587819 118
34 9259782419 138
35 19846138451 143
36 34613840351 151
37 73773096179 153

37 119607747731 174
38 163030664579 182
38 170361409391 207
43 4754588149211 229
64 9223374592776481199 231
64 9223384461444136499 233
64 9223394717698296659 243
64 9223452305977096799 249
64 18437888437706621771 269
64 18438220770445614311 272

` p d∗2(p)

6 47 3
7 83 6
8 131 8
8 179 15

10 1019 16
11 1091 26
11 1427 31
11 1811 36
14 9539 51
15 19211 68
19 334619 78
20 717419 80
21 1204139 104
22 2808251 114
24 8774531 116
24 11532611 117
25 18225611 152
27 98962211 155
28 247330859 166
30 738165419 174
30 1030152059 188
31 1456289579 197
32 2451099251 206
34 11159531291 207
34 13730529419 216
35 17221585499 219
35 19186524419 232
35 26203369331 242
37 92830394411 248
37 128808841619 287
38 232481520059 324
39 408727560491 335
40 807183995411 370

64 9223382101109640239 410
64 18158545127592455759 429
64 18158547872742314231 482
64 9223770987363748331 492
64 13835556230699448671 493
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Table 4: Sequence of primes in increasing order (and their bit-lengths `) for which dk(p) is strictly
increasing, for k ∈ {1,2}. The primes in the subtable for d0(p) have been taken from [75]. The
primes below the separating lines (for `≥ 37) have been found via our sieving method, which means
that there could exist smaller primes (missed by the sieving method) that give rise to the same or
higher values of d1(p) resp. d2(p). The primes below “? ? ?” are 64 bit primes with the best known
k-range. For all other primes (i.e. all primes listed except those found by sieving), it holds that the
prime is the smallest possible for a given dk(p).

` p d0(p)

4 11 1
5 23 4
7 71 6
9 311 10
9 479 12

11 1559 16
13 5711 18
14 10559 22
15 18191 28
15 31391 30
19 366791 42
22 4080359 46
24 12537719 52
25 30706079 58
26 36415991 60
27 82636319 66
27 120293879 72
27 131486759 82
32 2929911599 96
33 7979490791 100
35 33857579279 106
37 89206899239 108
37 121560956039 112
39 328878692999 130
39 513928659191 136
42 4306732833311 150
43 8402847753431 156
47 70864718555231 162
49 317398900373231 166
49 501108392233679 190
53 5551185799073591 198
53 7832488789769159 222
57 102097158739597271 228
59 315759454565514431 232
60 868116409360316399 238
62 3412527725201978759 240
62 3546374752298322551 270

` p d1(p)

5 23 5
5 31 10
7 71 11
8 167 13
8 191 19

10 599 20
11 1319 37
12 3119 40
14 9719 45
14 14951 60
17 110039 65
18 211559 66
19 283631 67
19 289511 72
19 333791 109
21 1884791 129
22 2817239 140
24 10522511 149
25 25155191 156
25 29036999 157
27 79107311 179
27 89658791 217
30 927633671 227
31 1514970551 276
36 56709623759 277
36 60221191631 281

37 81720228911 291
37 86345286719 339
38 187800947879 396
43 8714428081631 431
44 10422103551551 437
44 13729797542471 443
47 78991232073599 452
47 100395799811999 461
54 12210981354571991 577
54 13162388389217591 639

???
64 16141115006107484951 577

` p d2(p)

5 23 8
5 31 10
7 71 11
8 167 14
8 191 19
8 239 20
9 359 26
9 479 35

11 1151 38
11 1511 41
12 3527 43
12 3911 58
13 6551 59
14 8951 66
14 12239 89
15 25679 140
19 289511 176
20 662639 182
22 2798351 212
24 10328111 223
24 16178399 226
25 17431391 250
25 19632791 255
25 25380911 276
25 30809159 280
26 53422151 290
27 92989511 308
28 246241511 318
29 442696271 329
30 721250351 379
30 984093431 458
35 18233703479 498
35 29919732911 502

37 95110047119 508
38 149120083199 562
38 241922449271 570
40 696567525359 588
40 700217963639 608
41 1291095727151 640
41 2088877265999 668
43 8590297237079 720

???
64 16141221934733667719 1112
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3 MPC implementation of BWT algorithm for inexact DNA string search

3.1 Introduction

Solving the approximate string matching problem under tight privacy concerns is not a trivial task to
do. We use the BWT transform algorithm to research the problem of sequence comparison. Subse-
quently, we apply MPC techniques to investigate its applicability and to produce privacy-preserving
DNA sequence alignment algorithms. We implement our protocols in Python using the TUeVIFF
MPC framework, of which the underlying protocols are based on Shamir secret sharing.

We implement the protocols in a recursive manner as in the original implementation through ju-
dicious use of secret indexing and masking techniques. We identify and analyze two different models
to implement a solution for inexact string matching. The first model supports a private search query,
which is intended to be searched within a public reference string. The second model supports a private
search query in combination with a private reference string. As an example use case one may consider
a private search query to be DNA mutations that represent a particular illness and a reference string to
be human genomes.

Here we present the MPC implementation of the BWT-based inexact search algorithm together
with its construction. For brevity reasons background, preliminaries and performance aspects are cov-
ered in detail in [4]. A corresponding correctness proof and adaptive function evaluation is included
in SODA deliverable D1.2 that includes verifiable computation.

3.2 Preliminaries

3.2.1 Suffix Array

A Suffix Array SA [76] can be interpreted as lexicographically ordered list of the suffixes for string X
represented by pointers to their entry positions. SA provides a simple, space efficient method to store
all suffixes of a given string with their positions in the string.

3.2.2 Edit Distance

In computer science, edit distance (or Levenshtein distance) is utilized to measure the similarity be-
tween two strings. Given two strings A and B, the edit distance is the minimal number of edit opera-
tions needed to transform string A to string B. We denote this as ED(A,B)[88]. The edit operations
consist of insertion, deletion and substitution of a single character.

3.2.3 Burrows-Wheeler Transform (BWT)

The BWT algorithm was invented by David Wheeler and Michael Burrows in 1994 [17]. The main
concept of the algorithm is to rearrange a character string into a sequence of the non-divergent char-
acters. BWT became popular after its recognition as a compression tool, because compressed indexes
based on the BWT were among the simplest and most space efficient ones. Currently, it is one of the
most popular index structures for genomic data processing. It is used by a wide range of sequence
alignment tools.

The BWT algorithm is an efficient approach in order to align short sequencing reads (up to 100
base-pairs) with the reference genome (from here on referred to as sequence).

The BWT consists of a reversible permutation of the characters in a sequence. The algorithm
tends to have the convenient property to group characters that appear contiguously in substrings. This
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feature is useful for data compression, because a sequence of identical characters in several locations
is relatively easy to compress. This property can also be exploited in sequence alignment in a trans-
formation of the reference string that contains several substrings that occur often.

In order to analyze the entire transformation procedure we distinguish between two transform cat-
egories: forward transform or BWT, and a backward transform (inverse) or IBWT which constructs
the original sequence back from the transformed one.

The forward transform can be obtained in three major steps:

• Given sequence X, append a special sign ‘$’ that appears nowhere else within sequence. Alpha-
betically, it preceeds any character of X.

• Rotations: get the cyclic shifts of the sequence X by taking an element from one end of X ,
sticking it on to other end, and storing each rotation in a row of a [n x n] matrix for the given
length n of X .

• Sort and construct BWT: lexicographically sort the rows of the above matrix using the order of
$ < A < C < G < T over alphabet ∑ = {$,A,C,G,T}. The resulting matrix is the Burrows-
Wheeler Matrix (BWM). The transformed sequence (B) is the concatenation of the last symbols
of the cyclic rotations, namely the last column of the BWM read from top to bottom.

The other and further details are provided in [4]. Below we focus on the backward transform
algorithm for inexact searches, because that will be used as the basis for the private implementation.

3.2.4 BWT Backtrack

Inexact Backward search This search technique concentrates on bounded traversal / backtracking
of the search query W within reference string X . It uses a recursive algorithm that searches for suffix
array (SA) intervals of substrings of X that correspond to W with a bounded number of mismatches
or differences z.

The algorithm uses backward search to pattern distinct substrings from X . The concept behind
inexact search is similar to the exact search except that an upper bound for the number of differences
is introduced. The algorithm tries to find substrings with a maximum edit distance. An inexact search
is equivalent to search for the SA interval of substrings of X that match W , allowing z mismatches.
The inexact search algorithm is defined below [71].

• Let B be the BWT transform of X .

• Let C(ch) be the number of elements in original string X that is lexicographically smaller than
ch.

• Let O(ch,index) be the number of occurrences of character ch in transform B[0 : index].
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Algorithm 1 Inexact Search: Bounded Traversal/Backtracking
1: procedure INEXACT SEARCH(INPUT: X ,W,z,SA,B; OUTPUT: I)

. Pre: X : reference string, W : search term, z: upper mismatch bound, SA: suffix array for X ,
B : BWT transform of X

. Post: I: set of all SA intervals corresponding to W ′, such that X = YW ′Z, ED(W,W ′)≤ z
2: I← I∪ Inexact Recurrence(X , W, len(W )−1, z, 0, len(X)−1, SA, B)
3: return I

Algorithm 2 Inexact Search Recurrence
1: procedure INEXACT RECURRENCE(INPUT: X ,W, i,z,k, l,SA,B; OUTPUT: I)

. Pre: X : reference string, W : search term, i: index in W , z: upper mismatch bound, [k, l]: SA
interval where 0≤ k ≤ l ≤ n, SA: suffix array for X , B : BWT transform of X

. Post: Let R be the shortest string that corresponds to SA interval of [k, l] , I: set of all SA intervals
corresponding to W ′, such that X = YW ′RZ, ED(W [: i],W ′)≤ z

2: I← set()
3: if z < 0 then return /0 . no occurrences found
4: if i < 0 then return ([k, l]) . returning interval of the actual match
5: I← Inexact Recurrence(X ,W, i−1,z−1,k, l,SA,B) . Insertion
6: for each ch ∈ {A,C,G,T} do
7: kp←C(ch)+O(ch,k−1)+1
8: lp←C(ch)+O(ch, l)
9: if kp ≤ lp:

10: I← I∪ Inexact Recurrence(X ,W, i,z−1,kp, lp,SA,B) . Deletion
11: if ch =W [i] then
12: I← I∪ Inexact Recurrence(X ,W, i−1,z,kp, lp,SA,B) . Match
13: else
14: I← I∪ Inexact Recurrence(X ,W, i−1,z−1,kp, lp,SA,B) . Mismatch
15: return I

3.3 Related Work

Recent progress in the study of the human genome not only caused a revolution in biomedical science,
but also introduced new privacy concerns. The problem of oblivious genomic data processing within
a MPC context could be considered a relatively new research domain. Before explaining our novel
approach we analyze related work for privacy and security of sensitive genomic records.

The proposed solutions for privacy-preserving genomic data processing can be separated as fol-
lows [27]:

• A private query on private genomic data, e.g. inspection for a DNA mutation regarding a
specific illness with secret parameters in private patient-specific genomic data.

• A private query on public genomic data, e.g. searching with secret parameters in public health-
care data obtained from human genome libraries.

In the first case it is assumed that private patient-specific genomic data can reveal additional infor-
mation about the data owner such as date of birth, address, physical attributes (height, weight, blood
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type, etc.) apart from the sensitive genomic data. Several approaches have been proposed to tackle
this problem.

The work of Goodrich [43] introduces an attack model for the private query on private genomic
data scenario. The author’s approach shows that privacy-preserving protocols reveal extra information
about sensitive genomic data. The attack method succeeds by repetitively querying victim participants
until one obtains significant information from the protocol output. The possibility of this attack to suc-
ceed is high where in realistic use cases actual genomic data can be revealed by a number of queries.
This particular attack method also applies to our proposed privacy-preserving approach.

Atallah et al. introduce the first approach for oblivious genomic data processing [1]. They utilize
a new edit distance protocol and develope a new protocol in which no party reveals any information
about their private input to other parties. Our approach shares some similarities with this work to
compute the edit distance obliviously, e.g. usage of the dynamic programming recurrence relation.
On the other hand, our privacy-preserving protocol applies to a specific sequence alignment algorithm
(i.e. BWT [71]). A major drawback of their approach [1] is the performance inefficiency [60]. We
observe the same problem in our approach (see Section 3.6.1).

A new strategy to preserve privacy with the Smith-Waterman DNA sequence comparison algo-
rithm is introduced in [99]. This approach identifies similarities between compared sequences with
considerable reduction in the amount of false positives with performance comparable to other se-
quence comparison protocols. The important point to obtain in this work is the selection of the algo-
rithm (Smith-Waterman) for sequence similarities, which is also the reference algorithm in one of the
utilized BWT algorithms (i.e BWA-SW). However, the method reveals information during a compu-
tation procedure and therefore can not achieve strong privacy. On the contrary, our approach achieves
full privacy during both the computation and the protocol verification process.

Jha et al. [60] propose privacy-preserving techniques that achieve secure genomic data processing
and edit distance computation on sequences. They develope three different protocols for this. The
first protocol uses Yao’s garbled circuit [114] by exploiting its internal structure in order to achieve
secure circuit evaluation. The second protocol applies the method of secure computation with shares
[83, Chapter 7] where participants of a circuit can combine their randomly chosen shares to construct
the actual bit value of the output. Finally, the third protocol merges the first two protocols in order to
handle scalability issues and improve efficiency of the computation. However, an application of this
method [60] within a multi-party context could be considered problematic due to an inability to deal
with large-scale computations.

Kerschbaum [29] proposes a scheme to efficiently detect and mitigate the attack introduced by
Goodrich [43]. The method preserves the privacy of both parties while detecting similarities in ge-
nomic inputs using the combination of two cryptographic primitives: fuzzy commitments and secure
computations of edit distance. In addition, a zero-knowledge proof prevents client detection and en-
sures that both parties used the same input [27]. This contribution is similar to our novel approach
to verify the correctness of the oblivious genomic data processing. On the other hand, we have used
secure computations on edit distance and succinct [109] for verification of our proposed approach.

For the second case regarding a private query on a public database no known solution exists to our
knowledge. However, this particular problem can be considered as part of the above defined problem
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of a private query on a private genomic database. Hence, above solutions can be applied [27].

3.4 BWT Short-Read Alignment with Multi-Party Computation

The ability to implement the MPC algorithm using TUeVIFF is a requirement. Because computations
on a string of characters are not support in the VIFF framework, input strings should be represented
as arrays of numbers modulo some prime P in order to be used in the BWT algorithm. Here, DNA
sequences consist of the characters A,C,G,T encoded with 1,2,3,4, respectively. Additionally, 0 rep-
resents the special character ‘$’. This special character is not present anywhere within the sequence,
but appears only at the end.

3.4.1 Private Inexact Search

An inexact search is equivalent to the search for the SA interval of substrings of the reference string
X that matches the search query W , allowing z mismatches or differences. The private inexact search
algorithm looks for W as private data in the public X .

The private inexact search algorithm is defined below in Algorithm 3 and Algorithm 4:

Algorithm 3 Private Inexact Search: Bounded Traversal/Backtracking
1: procedure PRIVATE INEXACT SEARCH(INPUT: X , [[W ]],z,SA,B; OUTPUT: [[I]])

. Pre: X : reference string, [[W ]]: search term, z: upper mismatch bound, SA: suffix array for X ,
B : BWT transform of X

. Post: [[I]]: set of all SA intervals corresponding to W ′, such that, ∃Y,Z : X = YW ′Z, ED(W,W ′)≤
z

2: [[I]]← Private Inexact Recurrence(X , [[W ]], len(W )−1, z, 0, len(X)−1, SA, B)
3: return [[I]]

Sunday 30th September, 2018 D2.2 Application-Oriented MPC Protocols 41



H2020-LEIT-ICT 731583 SODA Deliverable D2.2

Algorithm 4 Private Inexact Search: Bounded Traversal/Backtracking Recurrence
1: procedure PRIVATE INEXACT RECURRENCE(INPUT: X , [[W ]], i,z,k, l, SA, B; OUTPUT: [[I]])

. Pre: X : reference string, [[W ]]: search term, i: index in W , z: upper mismatch bound, [k, l] : SA
interval where 0≤ k ≤ l ≤ n, SA: suffix array for X , B: BWT transform of X

. Post: let R be the shortest string that corresponds to SA interval [k, l] , [[I]]: set of all SA intervals
corresponding to W ′ such that, ∃Y,Z: X = YW ′RZ, ED(W [: i],W ′)≤ z

2: [[I]]←[0],. . . ,[0]
3: if z < 0 then return [[I]] . no occurrences found
4: if i < 0 then
5: for each j ∈ {k, . . . , l} do
6: [[I]] j← [1]
7: return [[I]] . returning interval of the actual match
8: [[I]]←Private Inexact Recurrence([[W ]], i−1,z−1,k, l,SA,B) . Insertion
9: for each ch ∈ {A,C,G,T} do

10: kp←C(ch)+O(ch,k−1)+1
11: lp←C(ch)+O(ch, l)
12: if kp ≤ lp:
13: [[I1]]←Private Inexact Recurrence([[W ]], i,z−1,kp, lp,SA,B) . Deletion
14: [[I]] = logicor([[I]], [[I1]])
15: [[equality]] = (ch == [[W ]]i)
16: [[I2]]←Private Inexact Recurrence([[W ]], i−1,z,kp, lp,SA,B) . Match
17: [[I3]]←Private Inexact Recurrence([[W ]], i−1,z−1,kp, lp,SA,B) . Mismatch
18: for each j ∈ {[0], . . . , [n]} do
19: [[I4]] j = (1− [[equality]])∗ [[I3]] j +[[equality]]∗ [[I2]] j

20: [[I]]← logicor([[I]], [[I4]])
21: return [[I]]

Let us analyze the main differences in input and output, which makes our private inexact search
algorithm more secure than the original version of the algorithm. In this version only W is private
input while all other input remains public. Another point is the public set returned in each recursion
of the original algorithm. This is converted into a secret shared bit vector in the private inexact search
(Algorithm 4). A union of these bit vectors is obtained by simply taking ∨(OR) element-wise. Overlap
between two bit vectors I1 and I2 can be handled as follows:

1. As an initial idea, we can think of simply adding I1 and I2 entry-wise. However, in overlapping
positions the sum of entries will result in 2, which is not a valid bit vector entry anymore. When
the result is opened later these numbers will leak some information.

2. Instead, we can take the entry-wise logical OR of the bit vectors I1 and I2. To ensure the
obliviousness of this procedure consider the formula {a+ b− a ∗ b} for each two entries from
the bit vectors. This operation costs only 1 multiplication for each entry while addition is for
free. Hereby, this computes a new set as a union of two sets (e.g. Algorithm 4, line 14)

This is possible by the simple logicor function implemented in Algorithm 5:

Sunday 30th September, 2018 D2.2 Application-Oriented MPC Protocols 42



H2020-LEIT-ICT 731583 SODA Deliverable D2.2

Algorithm 5 LogicOR function
1: procedure LOGICOR(INPUT: [[list1]], [[list2]]; OUTPUT: [[res]])

. Pre: [[list1]], [[list2]]: vector

. Post: res : union of the two input lists: res
2: res← [0], . . . , [0] . initialization
3: for each i ∈ {0, . . . , len(list1)} do
4: [[res]]i← [[list1]]i +[[list2]]i− [[list1]]i ∗ [[list2]]i . formula: a+b-a*b
5: end for
6: return [[res]] . union of two lists returned

In Line 11-14 of the original inexact search we execute either a ‘match’ or ‘mismatch’ recursion
call depending on whether the character ch from W is equal to the one in X or not. However, in the
private inexact search this distinction is not allowed. In order to not reveal any information about the
decision, i.e. if ch is equivalent to the queried character in W , we need to execute both recursions and
continue with the rest of function.

The VIFF sgn comparison function can be used to obtain a one bit value for the decision in Al-
gorithm 4 (Line 15). It results in 1 if character ch from X is equivalent to the current character W [i]
and 0 otherwise. However, after detailed analysis of different comparison methods in VIFF as a case
study, we introduce an interpolation based comparison that might increase efficiency approximately
by 5 times at least. The motivation behind this comparison mainly depends on the fact that compared
strings can only consist of 5 different characters, namely {$,A,C,G,T}. Therefore, we have intro-
duced new compare_eq comparison function.

We define the oblivious equality comparison function that maintains one formula for all possible
results of the comparison. This is possible due to the Lagrange interpolation formula, as the range for
the possible inputs is small and therefore allows efficient comparison by interpolation. All possible
input comparison decisions (x) and corresponding outputs(res) can be defined as:

res =

{
0, if −4≤ x≤−1,or if 1≤ x≤ 4
1, if x = 0

(7)

Given equation (7), we have used Wolfram Alpha to generate the unique interpolation formula.
Let us define the compare_eq function in order to succeed on character-wise oblivious comparison
for equality:

Algorithm 6 Character-wise oblivious DNA comparison for equality
1: procedure compare_eq(INPUT: [[el1]], [[el2]]; OUTPUT: [[res]])

. Pre: [[el1]], [[el2]] ∈ {0,1,2,3,4}

. Post: [[res]]: 1 if (el1 = el2), 0 otherwise
2: [[x]]← ([[el1]]− [[el2]])∗ ([[el1]]− [[el2]])
3: [[res]]← ([[x]]−1)∗ ([[x]]−4)∗ ([[x]]−9)∗ ([[x]]−16)/576

. Interpolation formula for all possible inputs
4: return [[res]]

The private inexact search considers both input and output of the C and O functions as public and
therefore the functions are computed normally as described in earlier sections.
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3.4.2 Fully Privacy-Preserving Inexact Search

The fully privacy-preserving inexact search assumes both search query W and reference string X to
be private data. Prior to investigating the proposed approach in more detail, an oblivious inverse
transformation algorithm has been implemented (see Algorithm 7). This case study has been helpful
to understand secret indexing and masking techniques in order to be applied in BWT as a next step.

Algorithm 7 Oblivious IBWT
1: procedure privateIBWT(INPUT: [[B]], [[SA]]; OUTPUT: [[X ]])

. Pre: [[B]]: last column of the BWM, [[SA]]: suffix array

. Post: [[X ]]: reference string without ‘$’
2: [[X ′]]← [0], . . . , [0]
3: for each index ∈ {0, . . . , len(SA)} do
4: [[target_index]] = [[SA[index]]]
5: [[X ′[target_index]]]← [[B[index]]]
6: end for
7: [[X ]]← [[X ′1]], . . . , [[X

′
len(X ′)−1]] . eliminate ‘$’

8: return [[X ]]

Algorithm 8 Private BWT

1: procedure privateBWT(INPUT: [[X ]]; OUTPUT: [[B]], [[SA]])
. Pre: [[X ]]: vector including also ‘$’
. Post: [[B]]: transform, last column of the BWM, [[SA]]: suffix array

2: for each i ∈ {0, . . . , len(X)} do
3: [[tab]]i = [[X [i+1, len(X)]]] ‖ [[X [0, i+1]]] ‖ [[i]] . create table of cyclic rotations
4: end for
5: [[s_tab]]← lexicographic sort of [[tab]] with comparelst . sorted table

. get transform
6: B← [[s_tab]]0,len(X)−2, . . . , [[s_tab]]len(X)−1,len(X)−2

. get suffix array
7: SA← [[s_tab]]0,len(X)−1, . . . , [[s_tab]]len(X)−1,len(X)−1
8: return [[B]], [[SA]]

There are two major differences between the simple and privacy-preserving model of BWT :

• Private SA computation: in private BWT, although the rows are public, during execution of
cyclic rotations the ordering of indices in BWM results into private data, namely the suffix array
which is secured by a secret indexing function.

• Secure comparison-based sort: a variant of the bitonic sort which exists in original VIFF doc-
umentation has been applied. The main change is the adaptation of the function to the matrix
sorting instead of sorting lists as in the original version. Given the function input from the set
∑= {A,C,G,T} the efficient interpolation method is used for the comparisons. As the elements
are secret shares, by giving all possible comparisons as input for selected lists, collecting all pos-
sible outputs in one single formula maintains the concept of the interpolation. The possibilities
for input and output can be defined in following form.
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Let us define the comparelst function in order to succeed on interpolation-based oblivious com-
parison for bitonic sort:

Algorithm 9 Oblivious DNA comparison: sequence
1: procedure comparelst(INPUT: [[lst1]], [[lst2]]; OUTPUT: [[res]])

. Pre: [[lst1]], [[lst2]] :sequence including ‘$’

. Post: [[res]]: 1 if (lst1 < lst2) lexicographically, 0 otherwise
2: [[x]]← [[lst1]][0]− [[lst2]][0]

. In case of equality
3: [[r]]← comparelst([[lst1]][1 :], [[lst2]][1 :])

. Interpolation formula for all possible inputs
4: [[res]]← (70 ∗ [[r]] ∗ ([[x]] ∗ [[x]]− 1) ∗ ([[x]] ∗ [[x]]− 4) ∗ ([[x]] ∗ [[x]]− 9) ∗ ([[x]] ∗ [[x]]− 16)− [[x]]∗

(1066+5∗ [[x]]∗ (205+[[x]]∗ (66+7∗ [[x]]))))/40320
5: return [[res]]

It is important that the sort must be executed for the entire row to ensure security even if the
decision could already have been made at the first character comparison between BWM rows. If
comparison of the elements at Line 2 of Algorithm 9 results in equality then the result is ignored
and the algorithm recursively runs again with the remaining elements of both lists as input pa-
rameters. As the range for the possible inputs is small, comparison can be done efficiently using
one general interpolation formula. This is possible due to the concept of polynomial interpo-
lation evaluation, in particular, Lagrange interpolation formula. All possible input comparison
decisions (x) and corresponding outputs (res) can be defined below (recursion defined as r):

res =


0, if −4≤ x≤−1
r, if x = 0
1, if 1≤ x≤ 4

(8)

Given equation 8, we used Wolfram Alpha to generate the unique interpolation formula repre-
sented in Algorithm 9 (Line 4).

Previously, the private inexact search (Algorithm 4) considered C and O as public and calculated
them as a function each time before starting execution of recursions. However, in the fully privacy-
preserving inexact search the algorithm uses secret shares as input to these functions which results in
secret shared C and O functions. Therefore, the functions C and O should be pre-computed for all
possible arguments and passed as parameters. Further, they should be defined as dictionaries instead
of calculating them as a function each time before executing recursions. Let us analyze how this
problem is solved:

• Recall that the C(ch) function uses character comparison to compute lexicographically smaller
elements for each secret ch in private reference string X . Element-wise comparison (com-
pare_el) is defined specifically for the C function, as it gets only one secret shared element
ch ∈ {$,A,C,G,T} as an input value. To achieve oblivious comparison we define the function
that maintains one formula for all possible results of the comparison given all possible inputs:

res =

{
1, if −4≤ x≤−1
0, if x = 0

(9)
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Given equation 9, we have used Wolfram Alpha to generate the unique interpolation formula.
Let us define compare_el function (Algorithm 10) in order to succeed on a character-wise
oblivious comparison:

Algorithm 10 Character-wise oblivious DNA comparison
1: procedure compare_el(INPUT: [[el1]], [[el2]]; OUTPUT: [[res]])

. Pre: [[el1]], [[el2]] ∈ {0,1,2,3,4}: representing {$,A,C,G,T}

. Post: [[res]]: 1 if (el1 < el2), 0 otherwise
2: [[x]]← [[el1]]− [[el2]]
3: [[res]] ← (x− 4) ∗ (x− 3) ∗ (x− 2) ∗ (x− 1) ∗ (0− x ∗ (1066 + 5 ∗ x ∗ (205 + x ∗ (66 + 7 ∗

x))))/40320
. Interpolation formula for all possible inputs

4: return [[res]]

To understand the motivation behind the C function, let us analyze Lines 2-5 of Algorithm
11. After initialization of C as dictionary in Line 7, the algorithm updates the values of C
corresponding to the keys from character set {$, A, C, G, T }. To tackle this problem, in Line 5
the value of C is updated with the comparison result of the compare_el function. This finalizes
the computation of the elements that are alphabetically smaller than ch in X .

• The comparison function (compare_eq) is used for the O function, as it gets as input values the
secret shared element ch ∈ {$,A,C,G,T} and the start-point of the SA interval, i.e. k. Recall,
the O function computes the number of occurrences of input character ch in the BWT transform
with the given index k, i.e. [[B[0 : [[k]]]]].

To understand the motivation behind the O function, let us analyze Lines 6-11 of Algorithm 11.
After initialization of O as dictionary in Line 7 the algorithm sets the count and increments it
with the comparison result of the compare_el function. In particular, the secret variable count
computes number of occurrences of ch in secret shared transform B and updates value of the
function O with the corresponding key accordingly in line 11.

Let us also define the full private inexact search algorithm with Algorithm 11 and Algorithm 12.
While analyzing the stop conditions of the algorithm it can be clearly observed that in order to

point all SA intervals, i.e. [k, l], all character comparisons should be made. In previous versions of the
inexact search algorithm this interval can be determined by succeeding two comparisons in the public
string X (e.g. Algorithm 4, Line 5-6). However, as in the new full private version X is also private, SA
interval, k and l should be secret shares, therefore they cannot be opened during the function execu-
tion. Therefore, comparison should be held on all elements of X in order to keep obliviousness. That
is, checking every entry one by one and to put all 1’s for [k, l] distances in a bit vector (Algorithm 12,
Line 6-8).

In Line 12-13, the pre-computation step for the kp and lp formulas, i.e. the computation of the O
function for both k and l, succeeds. As kp and lp values become secret shares during the execution of
the algorithm, comparison on these values is stored as a binary decision at cmp3 (see line 16, Algo-
rithm 12). Later in the algorithm, we apply this binary decision value to all elements of a result set,
thus it does not reveal any information about private values (see line 25).
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Algorithm 11 Full Privacy-Preserving Inexact Search: Bounded Traversal/Backtracking
1: procedure INEXACT SEARCH(INPUT: [[X ]], [[W ]],z, [[SA]], [[B]]; OUTPUT: [[I]])

. Pre: [[X ]]: reference string, [[W ]]: search term, z: upper mismatch bound, [[SA]]: suffix array for
X , [[B]] : BWT transform of X

. Post: [[I]]: set of all SA intervals corresponding to W ′, such that X = YW ′Z, ED(W,W ′)≤ z

. C function as dictionary
2: for each ch ∈ {1,2,3,4} do: [[Cch]]← [0]
3: for each char ∈ {[[X0]], . . . , [[X|X |−1]]} do
4: for each ch ∈ {1,2,3,4} do
5: [[Cch]]← [[Cch]]+ compare_el(ch, [[char]])
6: for each ch ∈ {1,2,3,4} do

. O function as dictionary, keys length of B
7: [[Och]]← [0], . . . , [0]
8: count = 0
9: for each j ∈ {0, . . . , [[len(B)]]} do

10: [[count]]← [[count]]+ [[compare_eq([[B]][[ j]], [[ch]])]]
11: [[Och]] j← [[count]] . store value for ch
12: [[I]]← Full Inexact Recurrence([[X ]], [[W ]], len(W )−1, z, [[0]], [[len(X)]]−1, [[SA]], [[C]],[[O]] )
13: return [[I]]

3.5 Correctness Proof and Adaptive Function Evaluation

The goal of the proof function is to evaluate the correctness of the private inexact search (Algorithm
4) and the full private inexact search algorithm (Algorithm 11) results. SODA deliverable D1.2 and
[4] provide a method to provide such a proof for the edit script, which contains the full sequence of
operations including matches and mismatches.

3.6 Discussion

Here we sketch some of the performance results. Details are provided in [4] together with a discussion
on further optimizations.

3.6.1 Performance Analysis

Figure 3 and Figure 4 show the performance difference between a VIFF implementation of the private
inexact search algorithm for one-party (testing only) and multi-party computation. Figure 5 shows
that the fully private MPC variant takes longer. A longer reference string is included in Figure 2 to
represent a more realistic scenario, but which would take relatively long to compute in a MPC setting
as shown in e.g. Figure 6. [4] has a more elaborate analysis. Yet, these experimental results show that
MPC techniques are tractable on genomic sequences of up to hundred characters in length.
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Algorithm 12 Full Privacy-Preserving Inexact Search Recurrence
1: procedure FULL INEXACT RECURRENCE(INPUT: [[X ]], [[W ]], i, z, [[k]], [[l]], [[SA]], [[C]], [[O]];

OUTPUT: [[I]])
. Pre: [[X ]]: reference string, [[W ]]: search term, i: index in W , z: upper mismatch bound, if k < l,

then [[[k, l]]] : SA interval, [[SA]]: suffix array for X , [[C]], [[O]]: pre-computed C and O functions
by Algorithm 11

. Post: : if k < l, let R be the shortest string that corresponds to SA interval of [[[k, l]]], [[I]]: set of
all SA intervals corresponding to W ′ such that X = YW ′RZ, ED(W [: i],W ′)≤ z

2: [[I]]←[0],. . . ,[0]
3: if z < 0 then return [[I]] . no occurrences found
4: if i < 0 then:
5: for each j ∈ {[0], . . . , [n]} do
6: [[cmp1]]←{ j ≥ [[k]]} . store binary decision 1
7: [[cmp2]]←{ j < [[l]]} . store binary decision 2
8: [[I]] j = [1]∗ ([[cmp1]]∗ [[cmp2]])
9: return [[I]] . returning interval of the actual match

. Insertion
10: [[I]]← Full Inexact Recurrence([[W ]], i−1,z−1, [[k]], [[l]], [[SA]], [[C]], [[O]])
11: for each ch ∈ {A,C,G,T} do
12: [[res1]] = [[Och]][[k]]−1
13: [[res2]] = [[Och]][[l]]−1
14: [[kp]]← [[Cch]]+1+([[res1]] if i! = len(W )−1 else 0)
15: [[lp]]← [[Cch]]+ [[res2]]
16: [[cmp3]] = {[[kp]]≤ [[lp]]} . store binary decision 3 for kp and lp

. Deletion
17: [[I1]]← Full Inexact Recurrence([[W ]], i,z−1, [[kp]], [[lp]], [[SA]], [[C]], [[O]])
18: [[equality]] = (ch == [[W ]][[i]])

. Match
19: [[I2]]← Full Inexact Recurrence([[W ]], i−1,z, [[kp]], [[lp]], [[SA]], [[C]], [[O]])

. Mismatch
20: [[I3]]← Full Inexact Recurrence([[W ]], i−1,z−1, [[kp]], [[lp]], [[SA]], [[C]], [[O]])
21: for each j ∈ {[0], . . . , [n]} do
22: [[I4]] j = (1− [[equality]])∗ [[I3]] j +[[equality]]∗ [[I2]] j

23: [[I5]]← logicor([[I1]], [[I4]])
24: for each j ∈ {[0], . . . , [n]} do
25: [[I6]] j = [[cmp3]]∗ [[I5]] j

26: [[I]]← logicor([[I]], [[I6]])
27: return [[I]]
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Figure 2: Time efficiency of Private Inexact Search Algorithm given reference string (length of 70)
in one-party scheme
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Figure 3: Time efficiency of Private Inexact Search Algorithm given reference string (length of 10)
in one-party scheme
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Figure 5: Time efficiency of Full Private Inexact Search Algorithm given reference string (length of
10) in one-party scheme
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4 Secure Convolutional Neural Networks

Convolutional neural networks (CNNs) have become a popular and effective class of machine learning
algorithms. A well-known application of CNNs is the recognition of handwritten digits. The MNIST
dataset of handwritten digits consists of a training set of 60,000 images and of a test set of 10,000
images.

We have investigated the following outsourcing scenario, using the MNIST dataset [18]. First, the
training images are used in the clear to obtain a highly reliable CNN classifier. Next, the classifier
is used on random test images keeping both the CNN parameters (neuron weights and bias for all
layers) and the test image secret. This way the use of the CNN classifier can be safely outsourced,
without running the risk of being copied by others. At the same time, the classifier can be run on
inputs (handwritten digits) that will also remain hidden. This is useful, e.g., when the digits represent
sensitive information, such as credit card numbers.

Figure 7: Convolutional Neural Network for MNIST digits (from adventuresinmachinelearning.com).

The structure of a CNN for recognizing handwritten digits is shown in Figure 7. There are two
convolutional layers (layer 1 and layer 2) and two fully-connected layers (layer 3 and layer 4). The
ReLU function, defined by ReLU(x) = max(x,0), is used as activation function for the entire network.
Both convolutional layers include a max-pooling stage.

The structure and the dimensions used for each layer is not considered confidential information
for our purposes. Hiding the structure and potentially hiding the exact number of layers (of each
type) would incur much higher cost. All other works for secure CNNs also reveal the structure of the
network (see, e.g., [74]).

We have designed and implemented several alternative secure evaluation of CNNs, either using
integer arithmetic only or using fixed-point arithmetic. Basic descriptions of CNNs such as shown
in Figure 7 assume floating-point arithmetic. All arithmetic operations are assumed to be done with
sufficient precision.

The evaluation of the CNN in Figure 7 can be done entirely using integral numbers only, provided
a proper scaling is used. It turns out that a maximum bit length of 37 bits suffices for the entire
computation. However, using the maximum bit length simply for all layers is overkill, as the numbers
only reach their maximal size in the final layer. Instead, we let the maximum bit length grow as we
move from one layer to the next layer. Concretely, we set the maximum bit length to `= 16,23,30,37
for the four layers of the MNIST CNN. This leads to direct savings for the integer comparisons
performed in a secure multiparty computation. In MPyC, we use a common protocol for secure
comparison that requires O(`) work and O(log`) rounds.
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Alternatively, evaluation of the MNIST CNN can be done using fixed-point arithmetic. A main
advantage of the use of fixed-point numbers is that we avoid the need for any (re)scaling during
the evaluation. We only need to choose the proper size for the fixed-point numbers that are used
throughout the entire evaluation (for all layers). We have found that a total bit length of 10 bits, with
4 fractional bits (hence the integer part consists of 6 bits), suffices for reliable results.

We have programmed all our solutions in MPyC. The code is available on GitHub, see

github.com/lschoe/mpyc/demos/cnnmnist.py.

The MPyC program cnnmnist.py combines the two approaches, using either secure integer
arithmetic or secure fixed-point arithmetic. Concretely, we either use the MPyC secure integer type
SecInt(37) or the MPyC secure fixed-point type SecFxp(10,4). When using integer arithmetic,
we set the maximum bit length for each layer by modifying the bit_length attribute of the secure
integer type. Note that we have also rearranged the applications of the ReLU activation function and
the max-pooling stage to minimize the total number of secure comparisons.

MPyC barriers are used to throttle the entire computation. By placing a barrier between two layers,
we prevent that the MPyC runtime starts evaluating the next layer before the previous layer is finished.
This way the memory usage of the MPyC runtime is limited. The number of barriers placed should
be limited, however, to ensure that sufficiently large parts of the entire computation will be evaluated
in parallel.

The performance for both solutions is quite similar. On a modern 4-core desktop PC (i7, 4th
generation) a sample run with three parties of the integer version runs in 2 mins 51 secs, whereas the
fixed-point version runs in 2 mins 56 secs. The maximum memory usage for the fixed-point version is
slightly lower than for the integer version. Note that MPyC has not been optimized for performance,
but rather for usability. The MPyC code is very similar to a Python program that evaluates MNIST
CNNs in the clear.

Sunday 30th September, 2018 D2.2 Application-Oriented MPC Protocols 53

https://github.com/lschoe/mpyc/blob/master/demos/cnnmnist.py
github.com/lschoe/mpyc/demos/cnnmnist.py


H2020-LEIT-ICT 731583 SODA Deliverable D2.2

O
pt

im
iz

e

Secure Multi-Party Computation

Secure Multi-Party Computation

relational query

Conclave 
compilerParty A Party B Party C

Conclave 
compiler

Conclave 
compiler

E
xe

cu
te

generate
local 

workflow

DECLARE TABLE … 
SELECT … FROM … 

Local
data-
parallel 
jobs

Conclave
dispatcher

Conclave
dispatcher

Conclave
dispatcher

Figure 8: Multiple parties agree on a relational query that Conclave turns into a mix of local and
secure MPC steps, generates the code for, and executes.

5 Conclave: Secure Multi-Party Computation on Big Data

5.1 Introduction

Deploying MPC to run joint analytics over large private data sets has a wide range of potential use
cases: for example, drug companies, medical researchers, and hospitals can benefit from jointly mea-
suring the incidence of illnesses without revealing private patient data [81, 7]; banks and financial
regulators can assess systemic risk without revealing their private portfolios [86, 10]; and antitrust
regulators can measure monopolies using companies’ revenue data.

However, integrating MPC into the “big data” analytics context at present faces two roadblocks: (i)
implementing MPC applications requires substantial domain-specific expertise, making it impractical
for most data analysts, and (ii) existing algorithmic techniques and software frameworks for MPC still
do not scale to large data sizes (§5.2) for typical big-data workloads.

This work presents Conclave, an MPC-enabled query compiler that addresses these problems.
Conclave’s design focuses on making MPC accessible and efficient: data analysts write relational
queries as if they had access to all parties’ data in the clear, and the query compiler turns the queries
into a combination of efficient local processing steps and secure MPC steps (Figure 8).

Two key ideas help Conclave scale to “big data”. First, Conclave combines insecure, but fast
and scalable, parallel data-processing systems (e.g., Hadoop MapReduce, Spark [117], or Naiad [79])
with secure, but slow, cross-party MPC systems (e.g., Sharemind [13], or Obliv-C [118]). Second,
Conclave analyses the queries to apply transformations that optimize runtime without compromising
security guarantees, and uses optional, coarse-grained annotations to gain further speedups.

Together, these ideas speed up query execution by processing data sets via high-throughput, data-
parallel local computations whenever possible, while combining intermediate results under MPC
where necessary. Conclave’s automatic division into local and MPC steps relieves data analysts
from the need to understand where to place the boundary between local and multi-party computa-
tion. Existing MPC frameworks, by contrast, either run the entire computation as an MPC, or require
fine-grained annotations on all variables to decide which operations run using cryptographic MPC
techniques [118, 13, 91]. Conclave, by contrast, has minimal annotation burden — none by default,
and optional column-level annotations on input tables to improve performance.
This work makes four key contributions:

1. the Conclave approach of doing as little work as possible, but as much as necessary, in MPC
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Figure 9: Existing MPC frameworks only scale to small data sets for common relational operators,
e.g., aggregations and joins. By contrast, Spark runs these operators on tens of millions of records in
seconds (note the log-scale x-axis).

(§5.3);
2. automated analyses that derive which parts of a relational query must be executed under MPC

using only coarse-grained annotations (§5.4);
3. new “hybrid” MPC–cleartext protocols that improve performance of MPC joins and aggrega-

tions using existing partial trust between parties (§5.5); and
4. our prototype implementation of Conclave, which applies these ideas to generate efficient code

for execution using sequential Python, Spark [117], Obliv-C [118] and Sharemind [13].
We measured the performance of our prototype using microbenchmarks and end-to-end relational
analytics queries (§5.6). Even with minimal annotations on input relations and basic optimizations,
Conclave scales queries to input data orders of magnitude larger than existing MPC frameworks can
support. Our new “hybrid” MPC–cleartext protocols speed up join and aggregation operators by 7×
or more compared to execution in Sharemind [13], a fast, commercial MPC framework.

5.2 Motivation

MPC has served purposes from detecting VAT tax fraud by analyzing business transactions [11], to
setting sugar beet prices via auction [14], and evaluating the gender pay gap across businesses [9].
Although these applications compute only over data of a few hundreds or thousands of records5, some
useful computations on large data would benefit from MPC, but are currently infeasible.

Further, we sketch two such example big-data applications of MPC.
Credit card regulation. A government regulator (in the U.S., the OCC [106]) who oversees

consumer credit reporting agencies (in the U.S., e.g., TransUnion) may wish to estimate the average
credit score by geographic area (e.g., ZIP code). The government regulator holds the social security
numbers (SSNs) and census ZIP code of potential card holders; credit reporting agencies, by contrast,
have the SSNs of card holders, their credit lines, and their credit ratings. By law, the government
regulator cannot share the residence information. Likewise, credit reporting agencies cannot share
raw portfolios for fear of leaking information to competitors through carelessness or compromise, so
MPC is needed. The input to this query is large: there are over 450M SSNs currently issued in the
U.S. [107] and at least 167M credit cards [104].

5A notable exception is the deployment described in [12] where several millions of tax and education records were
processed using Sharemind; the computation however took about two weeks to complete.

Sunday 30th September, 2018 D2.2 Application-Oriented MPC Protocols 55



H2020-LEIT-ICT 731583 SODA Deliverable D2.2

Market concentration. Competition law requires governments to regulate markets to prevent
oligopolies or monopolies. Regulators often use the Herfindahl-Hirschman Index (HHI) — the sum
of squared market shares of companies active in a marketplace — to decide whether scrutiny is war-
ranted [105, §5.3]. Public revenue data is coarse-grained, and the market shares of privately-held
companies are difficult to obtain. For example, airport transfers in New York City constitute a mar-
ketplace, for which an effective HHI considers only the revenue derived from airport transfers in the
market shares. Airport transfers made up 3.5% of 175M annual NYC yellow cab trips in 2014; many
trips were serviced by other vehicle-for-hire (VFH) companies [82]. While the inputs to the HHI com-
putation are small (a single number per company), computing them requires filtering and aggregating
over millions of trip records that companies keep private.

Scalabale processing systems such as Apache Spark [117] allow a data analyst to implement the
above applications in a high-level query language, for instance SQL or LINQ [77]. In the context
of SQL (and other relational languages), data is represented as relations, i.e., collections of rows
where each row represents a data record (for instance information about a single airport transfer) and
a column represents an attribute (for instance the time of a transfer). SQL queries consist of relational
operators such as joins, aggregations, and projections which allow an analyst to manipulate relations.

To make MPC more accessible to data analysts without MPC expertise, it is apt to provide similar
abstractions; this requires integration with a SQL-like front-end language and MPC implementations
of common relational operators. Realizing these operators as MPC protocols however is not trivial —
a join on private records for instance requires to obliviously link two relations on key attributes; an
aggregation requires rows with equal attributes to be obliviously grouped together.

The requirement to keep the underlying algorithms data-oblivious, along with the additional per-
formance limitations of current MPC schemes — i.e., the communication overhead of secret-sharing
based protocols and the state size explosion of garbled circuits — results in stark scalability limita-
tions, as we show further.

Figure 9 compares insecure plaintext execution of two relational operators to execution in MPC
frameworks using secret-sharing (Sharemind [13]) and garbled-circuits (Obliv-C [118]). Each experi-
ment inputs random integers and runs a single operator. The MPC frameworks run with two (Obliv-C)
or three (Sharemind) parties, who in aggregate contribute the record count on the log-scale x-axis; in-
secure computation runs a single Spark job on the combined inputs. While Spark processes millions
of records in seconds, neither Obliv-C, nor Sharemind MPC scale past a few thousand records for
either operator.

These results are consistent with prior studies: Sharemind takes 200s to sort 16,000 elements [62],
and DJoin takes an hour to join 15,000 records [81]. Current MPC systems therefore seem unlikely to
scale to even moderate-sized data sets. In particular, the poor performance of joins and aggregations is
concerning: over 60% of practical analytics queries use joins, and over 34% contain aggregations [61].
Apart from new cryptographic techniques with better scalability, the best way to run MPC on large
data may therefore be to avoid using its cryptographic techniques unless absolutely necessary.

5.3 Conclave overview

The key insight behind Conclave is that the end-to-end security guarantees of MPC can often hold even
if parts of a query run outside MPC. This insight allows to use cheaper algorithms, local computation,
and scalable, data-parallel processing systems for parts of the query. This is crucial for scaling MPC
to large data sets.

Conclave’s guiding principle is to do as little as possible and as much as necessary under MPC: in
other words, Conclave minimizes the computation under MPC until no further reduction is possible.
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1 import conclave as cc
2 pA, pB, pC = cc.Party("mpc.ftc.gov"), \
3 cc.Party("mpc.a.com"), cc.Party("mpc.b.cash")
4 demo_schema = [Column("ssn", cc.INT, trust=[]),
5 Column("zip", cc.INT, trust=[])]
6 demographics = cc.newTable(demo_schema, at=pA)
7 # banks trust the regulator to compute on SSNs
8 bank_schema = [Column("ssn", cc.INT, trust=[pA]),
9 Column("score", cc.INT, trust=[])]

10 scores1 = cc.newTable(bank_schema, at=pB)
11 scores2 = cc.newTable(bank_schema, at=pC)
12 scores = cc.concat([scores1, scores2])
13 # query to compute average credit score by ZIP
14 joined = demographics.join(scores, left=["ssn"],
15 right=["ssn"])
16 by_zip = joined.aggregate("count", cc.COUNT,
17 group=["zip"])
18 total_sc = joined.aggregate("total", cc.SUM,
19 group=["zip"])
20 avg_scores = \
21 total_sc.join(by_zip, left=["zip"], right=["zip"])
22 .divide("avg_score", "total", by="count")
23 # regulator gets the average credit score by ZIP
24 avg_scores.writeToCSV(to=[pA])

Listing 1: Credit card regulation query in Conclave’s LINQ-style frontend with input relations loca-
tions (lines 6, 10–11), and an optional trust annotation (line 8).

Intuitively, any operation computed using only a party’s local inputs and publicly available data can
run outside MPC, as can any operation that applies only reversible operations to reach a final, revealed
result. Conclave detects such cases automatically, generates code for existing MPC and cleartext data
analytics frameworks, and manages its execution. This frees the data analyst from picking which
operations to run under MPC, and from manually orchestrating several systems.

Like many practical MPC systems, Conclave assumes an honest-but-curious adversary.
Conclave also provides performance optimizations that rely on an understanding of de facto trust

relationships between parties to introduce harmless, deliberate “leakage” that speeds up MPC steps.
These optimizations rely on a semi-trusted party (STP), who may learn parts of an operator’s input
data in the clear, and who assists the multi-party computation by performing otherwise expensive
operations outside of MPC. For instance, the performance of both joins and aggregations can improve
significantly if Conclave can leak their key columns (but no other columns) to an STP. Importantly,
however, Conclave guarantees to apply value-leaking optimizations only if users supply explicit input
annotations that permit deriving an authorization (§5.4.2).

Furthermore, Conclave makes the relaxing security assumption that the size of all input, interme-
diate, and output relations, i.e., their row count, is public. In other words, Conclave does not hide
the size of any relation during execution. Hiding the size of intermediate relations would require
padding each relation to a fixed size that exceeds the size of the largest relation, which is prohibitively
expensive.

5.4 Specifying Conclave queries

Conclave is a query compiler that transforms a relational query into a data processing workflow. It
is similar to plaintext-only big data query compilers (e.g., Hive [100], Pig [84], or Scope [19]) and
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1 import conclave as cc
2 pA, pB, pC = cc.Party("mpc.a.com"), \
3 cc.Party("mpc.b.com"), cc.Party("mpc.c.org")
4 # 3 parties each contribute inputs with same schema
5 schema = [Column("companyID", cc.INT, trust=[]),
6 # ...
7 Column("price", cc.INT, trust=[])]
8 inputA = cc.newTable(schema, at=pA)
9 inputB = cc.newTable(schema, at=pB)

10 inputC = cc.newTable(schema, at=pC)
11 # create multi-party input relation
12 taxi_data = cc.concat([inputA, inputB, inputC])
13 # relational query
14 rev = taxi_data.project(["companyID", "price"])
15 .aggregate("local_rev", cc.SUM,
16 group=["companyID"], over="price")
17 .project([0, "local_rev"])
18 market_size = rev.aggregate("total_rev", cc.SUM,
19 over="local_rev")
20 share = rev.join(market_size, left=["companyID"],
21 right=["companyID"])
22 .divide("m_share", "local_rev",
23 by="total_rev")
24 hhi = share.multiply(share, "ms_squared", "m_share")
25 .aggregate("hhi", cc.SUM, on="ms_squared")
26 # finally, party A gets the resulting HHI value
27 hhi.writeToCSV(to=[pA])

Listing 2: Market concentration query in Conclave’s LINQ-style frontend. Note the owner annota-
tions on the input tables (lines 7–9) and the final result (line 25).
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“workflow managers”, like Apache Oozie [55] or Musketeer [42]. Like these systems, Conclave
transforms the query into a directed acyclic graph (DAG) of relational operators, and executes this
DAG on several backend systems. Unlike prior query compilers, however, Conclave rewrites the
query to improve performance while taking care to preserve MPC’s security guarantees.

Conclave assumes that analysts are comfortable writing relational queries using SQL or LINQ [77];
that they agree via out-of-band mechanisms on the query to run; and that all parties faithfully execute
the protocol.

Parties locally store input data with the schema expected by the query. Each party runs (i) a local
Conclave agent, which communicates with the other parties and manages local and MPC jobs, (ii) at
least one local data processing system (e.g., Hadoop MapReduce, Spark, or Naiad), and (iii) a local
MPC endpoint (e.g., an Obliv-C or Sharemind node), all on private infrastructure.

5.4.1 Query specification

Conclave queries can be written in any way that compiles to a directed acyclic graph (DAG) of op-
erators. Listings 1 and 2 show the credit ratings and market concentration queries from §5.2 in a
DryadLINQ-like language [116].

Even though the input data to a Conclave query is distributed across multiple parties, Conclave
largely abstracts this fact away from analysts. Concretely, the analysts specify the query’s core as
though it was a relational query on a single database stored at a trusted party (lines 14–22 of Listing 1
and lines 13–24 of Listing 2).

The only difference from a relational query is that Conclave also requires identifying at which
input relations are located (lines 7–12 and 4–9). Each input relation has a specified “owner”, viz., the
party storing it. This information helps Conclave (i) locate the data, and (ii) detect where operations
combine data across parties. By combining per-party input relations using a duplicate-preserving set
union operator (concat, lines 12 and 11), analysts can create compound relations across parties and
use them in the query. In addition to inputs, analysts also annotate each output relation with one or
more recipient parties. These parties end up storing the cleartext result of executing the query (lines
22 and 25).

Conclave’s high-level, declarative query specification contrasts with existing MPC frameworks,
which usually provide Turing complete DSLs (e.g., SecreC [57] or Obliv-C [118]). While they are
expressive, such interfaces are often unfamiliar to data analysts and require fine-grained security an-
notations of intermediate variables.

5.4.2 Optional trust annotations

In addition to mandatory input relation location annotations, Conclave also supports optional light-
weight trust annotations that help it apply further optimizations. These annotations specify parties
who are authorized to learn specific values in specific input schema columns in the clear to compute
more efficiently on them.

The intuition behind trust annotations is that the sensitivity of data within a relation often varies
by column. Consider a relation that holds information about a company’s branches: it may have
public address and zip columns (as this information is readily available from public sources), but
privately-owned columns isFranchise or workforceUnionized. Other columns may be private, but
the owning party might be happy to reveal them to a specific semi-trusted party (STP), such as a
government regulator. For example, in the credit card regulation query (Listing 1), the government
regulator already holds demographic information organized by SSN, and the credit card companies
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Figure 10: Conclave minimizes the work under MPC by: (i) pushing the MPC frontier down and
locally preprocessing where possible; (ii) pushing the MPC frontier up from the outputs, processing
reversible operators in the clear at the receiving party; and (iii) inserting special “hybrid” operators
that implement efficient hybrid MPC-cleartext protocols.

may be willing to reveal the SSNs of their customers to the regulator (though not to the other parties,
i.e., their competitors). Hence, the parties agree to make the regulator a semi-trusted party for the
ssn column of the credit card companies’ customer relations (see line 8, Listing 1). Such selective
revealing of columns where permissible can help Conclave avoid, or shrink, expensive MPC steps and
substantially improves performance.

A trust annotation associates a column definition with a trust set of one or more parties. Any
party in the trust set can be a semi-trusted party for computing on the annotated column. This party
may obtain the cleartext data for this column and combine it — locally and in the clear — with public
columns, other columns with an overlapping trust set, and columns it privately owns. A party storing
an input relation is in the trust set for all its columns; as are recipients for an output relation. Finally,
a public column is one that has all parties in its trust set.

5.5 Query compilation

The annotations on input and output relations provide the necessary information for Conclave to
determine which parts of the query DAG must run under MPC. Conclave automates this reasoning to
free the data analysts from manual labor and to avoid subtle mistakes. Conclave applies a combination
of static analysis, query rewriting transformations, and partitioning heuristics. Its goal is to execute as
many operators as possible outside of MPC, and to reduce data volume processed under MPC where
possible, while maintaining security guarantees.

Conclave analyzes and optimizes a query in four stages (Figure 10); all parties run these deter-
ministically.

1. Conclave starts with a query plan consisting of a single, large MPC. First, it propagates input
relation locations to intermediate relations to determine where data crosses party boundaries
(§5.5.1).

2. Using this information, Conclave then rewrites the query into an equivalent query with fewer
operators under MPC. This results in a DAG with a clique of inner operators under MPC, and
with efficient cleartext operators at the roots and leaves (§5.5.2).

3. Conclave then propagates the trust annotations from input relations through the DAG, and com-
bines them according to inference rules in order to determine when parts of operators can run
outside MPC.
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4. Subsequently, and propagated trust annotations permitting, Conclave splits the monolithic inner
MPC into several smaller MPCs and local steps by adding hybrid MPC-cleartext operators
in place of operators that can run partially outside MPC. Conclave then breaks these hybrid
operators into cliques of local cleartext operators and secure MPC operators (§5.5.3).

5. Finally, Conclave partitions the query by splitting the DAG at each transition between local
and MPC operations, generates code for the resulting sub-DAGs, and executes them on the
respective backends.

5.5.1 Propagating annotations

The input and output relation annotations give Conclave information about the roots and leaves of the
DAG. Conclave propagates this information through the DAG to infer the execution constraints on its
operators.

In a first pass, Conclave propagates input locations down the DAG in a topological order traversal,
and propagates output locations back up the graph in a reverse topological order traversal. At each
intermediate operator, the propagation derives the owner of its output relation. A party “owns” a
relation if it can derive it locally given only its own data; input relations are owned by the party that
stores them. The output relation of any operator that combines data across parties, has no individual
owner: no single party can compute it. Operators producing output relations with no owner must run
under MPC.

Conclave propagates relation ownership along edges using inference rules based on operators’
input count. The output of a unary (i.e., single-input) operator inherits the ownership of its input
relation directly. The owner of the output relation of a multi-input operator depends on ownership of
its input relations. If all input relations have the same owner, the ownership propagates to the output
relation; if they have different owners, the output relation has no unique owner. This process captures
the fact that any operator which combines data held by different parties produces joint data that must
be protected.

In a second pass, Conclave propagates trust annotations from input relations in topological or-
der, and combines them using similar rules. Specifically, unary operators propagate their input’s trust
annotation to all outputs, while multi-input operators intersect their input’s trust annotations to deter-
mine their outputs. This captures the fact that Conclave can only use hybrid operators to run an MPC
with the aid of a semi-trusted party if all parties supplying inputs to the MPC trust that semi-trusted
party. However, this pass alone is insufficient and can introduce unauthorized leakage. The STP may
infer additional information if the output of a hybrid operator (computed with the aid of an STP) is
further combined, under MPC, with a relation owned by a party that does not trust the STP with her
data. In particular, the STP can combine her knowledge of the plaintext values leaked via the hybrid
operator with leaked sizes of intermediate relations. To prevent such leakage, Conclave — after the
initial propagation — finds operators that combine relations whose trust sets differ by D 6= /0. It tra-
verses all paths from these relations back to inputs, purging any parties in D from trust sets along the
paths. The final trust sets allow Conclave to determine when it can use hybrid operators.

5.5.2 Finding the MPC frontier

Conclave starts planning the query with the entire DAG in a single, large MPC. It then pulls operators
that can run on local cleartext data out of MPC, and splits other operators into local pre-processing
operators and a smaller MPC step. These transformations push the MPC frontier — viz., the bound-
ary between MPC operators and local cleartext operators — deeper into the DAG, where a clique of
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operators remains under MPC.
MPC frontier push-down. Conclave pushes the MPC frontier down the DAG as far as possible
while preserving correctness and security guarantees, starting from the input relations. After the
ownership propagation pass, each relation is either (i) a singleton relation with a unique owner; or (ii)
a partitioned relation without an owner. In a partitioned relation, multiple parties hold a subset (i.e.,
partition) of the relation. Conclave traverses the DAG from each singleton input relation and pulls
operators out of MPC until it encounters an operator with a partitioned output, which it must process
under MPC.

Queries often combine inputs from multiple parties into a single, partitioned relation via a concat

operator. This creates a “virtual” input relation that contains data from all parties (e.g., scores on
line 12 of Listing 1, and taxi_data on line 11 of Listing 2). While convenient, this forces Conclave
to enter MPC early, since the output of a concat operator is a partitioned relation. To avoid this,
Conclave pushes concat operators down past any operators that are distributive over input partitions:
i.e., for operator op and relations RpA to RpN owned by pA to pN,

op(RpA | ... | RpN)≡ op(RpA) | ... | op(RpN).

For example, the projection over taxi_data in the market concentration query (Listing 2, line 13) is
distributive, as applying it locally to inputA, inputB, and inputC produces the same result and leaks
no more information than running it under MPC. Consequently, Conclave can push the MPC frontier
further down.

Other operators, however, do not trivially distribute over the inputs of a concat. For example, split-
ting an aggregation that groups a partitioned relation by key and applying it to the original singleton
relations requires another, secondary aggregation to produce identical results. Conclave inserts such
a secondary aggregations when possible.6 While the secondary aggregation must remain under MPC,
Conclave can pull the local pre-aggregations out of MPC and significantly reduce the MPC’s input
data size. Moreover, Conclave can push the operator clique of concat and the secondary aggregation
(which now forms the MPC frontier) past other distributive operators. In the market concentration
query, Conclave pushes the MPC frontier to right above the market_size relation, at which point the
data amount to only few integers per party.
MPC frontier push-up. In certain cases, Conclave can also push the MPC boundary up from the
output relations (i.e., the DAG’s leaves). Some relational operators are reversible, i.e., given their out-
put, it is possible to reconstruct the input without additional information. For example, multiplication
of column values by a fixed scalar factor has this property (provided the factor is 6= 0): revealing the
multiplied values also reveals the multiplication inputs. Conclave’s MPC push-up pass starts at output
relations and lifts the MPC frontier through reversible operators by the revealing the input to operator
to the output party, thus enabling local computation.

5.5.3 Hybrid operators

In its final rewrite pass, Conclave splits work-intensive operators, viz., joins and aggregations, into
hybrid operators. Hybrid operators outsource expensive portions of an operator to a semi-trusted
party (STP) by revealing some input columns to the STP. Hybrid operator execution thus involves local
computation at the STP and MPC steps across all parties. Conclave can only apply this transformation
if the query comes with trust annotations that relax input columns’ privacy constraints.

6This transformation leaks the size of the local aggregation result; Conclave currently treats all intermediate relation
sizes as public. We plan to investigate padding approaches to alleviate this leakage (at the cost of increased runtime).
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In the context of hybrid operators, a party is either (i) the STP, or (ii) a regular, untrusted party.
Conclave deliberately leaks plaintext values of some columns to the STP, but maintains the standard
MPC privacy guarantees for these columns towards the untrusted parties, and towards all parties for
all other columns.

Conclave currently supports two hybrid operators: a hybrid join, and a hybrid aggregation. In
the context of this report we focus on the hybrid join, and summarize the intuition behind the hybrid
aggregation.

Hybrid join. Conclave can transform a regular MPC join into a hybrid join if the key columns
of both sides of the join have intersecting trust sets, i.e., they have an STP in common. This STP
learns the key columns on both sides of the join and computes, in the clear, which keys in the key
columns match. The STP hence determines which rows in the secret-shared relations are in the join
result without learning any other column values.

More concretely, the STP can compute the indexes of the rows of each input relation that comprise
the result of the join. Using these indexes, the STP and the untrusted parties can jointly compute the
result of the join. To avoid leaking information about the key columns to the untrusted parties, the
parties employ an oblivious selection protocol (akin to the one by Laud [70]). An oblivious selection
allows the parties to use a set of secret indexes to select the corresponding rows from a relation without
leaking the indexes.

Before presenting the protocol, we establish some notation. Given a relation R, consisting of c
columns and n rows, we denote the i-th column of R as R(i). We index columns starting at 1, i.e., the
first column of R is R(1). We denote a secret-shared relation as JRK.

An MPC join (and similarly a hybrid join), takes as input two relations JLK and JRK with l and
r columns respectively, and two column indexes kl and kr designating the key columns of the join.
The join produces as output relation JJK consisting of l + r columns. JJK contains all combinations
of the rows from JLK and the rows from JRK where the key column value of the row from JLK (the
value at index kl) equals the key column value of the row from JRK (the value at index kr). The first l
columns of JJK correspond to the columns taken from JLK and the remaining r columns correspond to
the columns taken from JRK.

We present the hybrid join protocol in Protocol 7.
Step 1 of the protocol reveals the values of the key columns to the STP, but this exposure is

authorized by the input relations’ trust annotations.
Step 5 leaks the size of the joined result to the untrusted parties. This does not violate Conclave’s

privacy requirements since intermediate relation sizes are considered public. The oblivious selection
protocol in Step 6 prevents further leakage to the untrusted parties.

The oblivious selection requires O((n+m) log(n+m)) non-linear operations, where n is the input
size and m the result size, in contrast to the standard MPC join protocol, which requires O(n2 logn)
non-linear operations (but assumes no STP).

Hybrid aggregation. Conclave can transform an MPC aggregation into a hybrid aggregation
if the trust set on the group-by column contains an STP, i.e., there is an STP authorized to learn
the group-by column values. Conclave’s hybrid aggregation protocol adapts the sorting-based MPC
protocol by Jónsson et al. [62]. Since the STP has cleartext access to the group-by column, Conclave
can outsource several work-intensive steps of the original protocol to her, including the oblivious
sorting step (which is the main bottle-neck of the original protocol). The hybrid aggregation improves
asymptotically over the regular MPC protocol: the oblivious sorting step of the original protocol is
based on a sorting network and requires O(n log 2n) oblivious comparisons; in contrast, the hybrid
aggregation performs the sort in the clear and only needs an oblivious shuffle which can be realized
with O(n logn) multiplications [66].
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Protocol 7 (JJK)← HybridJoin(JLK,JRK,kl,kr),
JLK, JRK are secret relations
kl is key-column index of JLK, kr is key-column index of JRK

1: The parties reveal to the STP the key columns of the input relations, JL(kl)K, and JR(kr)K.
2: Given open key-column relation L(kl), the STP enumerates its rows, obtaining EL. Column EL(0)

contains the keys of the original relation, and column EL(1) contains the row indexes. The STP
does the same for R(kr), obtaining ER.

3: The STP performs a clear-text join on the key columns of EL and ER, obtaining EJ. Each row in
EJ consists of four entries {k, il,k, ir}, where k is the join-key value, il is the index of a row in
JLK, and ir is the index of a row in JRK.

4: The STP computes LI← EJ(2), which contains the indexes of the rows of the left input relation
JLK comprising the result of the join, and RI← EJ(4) which contains the indexes of the rows of
the right input relation JRK.

5: The STP secret-shares JLIK← LI and JRIK← RI.
6: Under MPC, the parties perform an oblivious selection protocol (akin to the one by Laud [70])

using the indexes JLIK to select the rows from JLK comprising the result of the join. We denote the
result as JJLK. The parties do the same for JRIK, selecting the correct rows from JRK. We denote
the result as JJRK.

7: The parties concatenate the columns of JJLK and JJRK to obtain the final result of the join JJK.

5.6 Evaluation

Further, we summarize a preliminary evaluation of Conclave’s performance yields using our motivat-
ing queries (§5.2).
Setup. We run all our experiments with three parties. Each party runs a four-node cluster that consists
of three Spark VMs and one Sharemind VM. The Spark VMs have 2 vCPUs and 4 GB RAM, and
run Ubuntu 14.04 with Spark 2.2 and Hadoop 2.6. The Sharemind VM has 4 vCPUs and 8 GB RAM,
runs Debian Squeeze and Sharemind 2016.12. All machines have Intel Xeon E3 CPUs running at 2.4
GHz, connected by a 10G network.
Metrics. All our graphs increase the data size on the x-axis by five to eight orders of magnitude, and
plot query runtime on the y-axis. Less is better in all graphs, and we use a log10-scale x-axis to be able
to show the scalability limits of different systems on the same graph, even though they often vary by
orders of magnitude.
Market concentration query. The market concentration query computes the Herfindahl Hirschman
Index (HHI) [50] over the market shares of several vehicle-for-hire (VFH) companies, whose sales
books we model using six years of public NYC taxi trip fare information [94]. We randomly divide
the trips across three imaginary VFH companies and filter out any trips with a zero fare. This results
in a total of 1.3 billion trips across all parties. We subsample different numbers of rows from the input
data sets, and measure the end-to-end query execution time for different input sizes.

Figure 11a shows the results across eight orders of magnitude in input size. It is evident that this
query scales poorly when run entirely under MPC in Sharemind: at 100,000 input rows, Sharemind
does not complete it within an hour. The query contains an aggregation, and the runtime of this
expensive operator (cf. §5.2, Fig. 9) dominates all others. Its poor scalability leads to a rapid increase
in execution time at 10,000 records. Conclave, by contrast, scales roughly linearly in the size of the
input data, since it pushes the MPC frontier past aggregations for the per-party revenue. All data-
intensive processing happens outside MPC in local Spark jobs, and only a handful of records enter the
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(a) Market concentration query (§5.4, Listing 2).
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(b) Credit card regulation query (§5.4, Listing 1).

Figure 11: Our preliminary performance results show that Conclave’s optimizations yield order of
magnitude improvements for realistic queries (§5.2).

final Sharemind computation, which consequently completes quickly. In particular, Conclave runs the
market concentration query in <20 minutes for 1B input records.
Credit card regulation query. Conclave’s hybrid operators can offer substantial benefits for the
common case of queries whose performance is dominated by aggregations and joins. The credit
card regulation query is an example: it first performs a join between the regulator’s demographic
information, and then computes an aggregate (viz., the average score grouped by ZIP code). The
credit card companies are happy to trust the regulator (but not their competitors) with the SSNs of
their customers, and the regulator wishes to keep the mapping from SSNs to ZIP codes private (e.g.,
to prevent credit card companies from targeted advertising to their competitors’ customers). Hence,
Conclave can apply both the hybrid join and the hybrid aggregation operator transformations to this
query. Even though these optimizations increase query complexity, we expect them to reduce the
runtime as both the complex join and the aggregation work can now happen outside MPC.

Figure 11b confirms this. Running the query entirely under MPC in Sharemind fails to scale
beyond 10,000 customers per company; at 100k customers, the query does not complete within two
hours. With Conclave’s hybrid operators, however, the query completes in about twenty minutes even
at these large scales. The experiment also highlights that hybrid operators are crucial to obtaining
good performance for this query: since the first operator is a join, Conclave cannot push the MPC
frontier further down. Hence, without the hybrid operators, Conclave would have no choice but run
the entire query under MPC.

5.7 Related Work

We now highlight elements of Conclave that relate to other approaches to building privacy-protecting
systems. We omit prior work in MPC algorithms, frameworks, and deployments already discussed
in §5.2. Instead, we survey efforts that have made innovations in “mixed mode” operations, query
rewriting, and query scalability for MPC.

MPC with mixed mode operation. Wysteria [91] performs mixed mode computations that move
between MPC and local work. Wysteria programs are written in a DSL that creates the programmer
illusion of a single thread of control, but require familiarity with said DSL. Unlike Wysteria, Con-
clave programs are standard relational queries, and Conclave supports distributed backend systems
for parallel processing: it connects with existing big data analytics frameworks like Spark.

Query rewriting. There are several efforts to optimize MPC via query rewriting, like Conclave
does, at different levels of abstraction. Kerschbaum [67] operates at the circuit level, transforming

Sunday 30th September, 2018 D2.2 Application-Oriented MPC Protocols 65



H2020-LEIT-ICT 731583 SODA Deliverable D2.2

a manually assembled circuit into a different one with faster execution under MPC (e.g., using the
distributive law to reduce the number of multiplications). Other systems perform query rewriting at
the relational algebra level, such as SMCQL [7] and Opaque [119]. SMCQL, like Conclave, uses
column-level annotations, but differentiates only between public and private columns. Conclave’s
annotations are more expressive, and Conclave’s hybrid protocols allow for additional performance
improvements. Opaque, by contrast, runs most computation in the clear, but inside a protected Intel
SGX enclave; its query rewriting rules focus on reducing the number of oblivious sorts required in
distributed computation across multiple SGX machines.

Protected databases and scalability. The protected database community has produced decades
of research on scaling secure query execution to the gigabyte-to-terabyte range [16, 46, 37]. This
includes work on optimizations for boolean keyword search [87, 30], as well as large, general subsets
of relational algebra [63]. These works largely target querying a single protected database, as opposed
to Conclave’s distributed scenario. Investigations into the scalability of secure MPC often involve
laborious hand-optimization by groups of cryptographers on specific queries like set intersection [54,
64], linear algebra [38], or matching [26].

Inference and privacy. MPC protects sensitive state during computation but provides no restric-
tion on the ability to infer sensitive inputs from the provided outputs. Differential privacy (DP) [28]
provably ensures that the output of an analysis reveals nothing about any individual input, but often
uses a trusted curator to perform the analysis. Several prior systems have combined MPC and DP to
avoid computing and output parties jointly reconstructing sensitive input data. DJoin [81] does so for
SQL-style relational operations (with query rewriting, but without Conclave’s automation and hybrid
protocols), DStress [86] does so for graph analysis, and He et al. [48] do so for private record link-
age. Conclave does not currently leverage DP in any way, but its query rewriting and code generation
components are both sufficiently extensible to support addition of DP.

5.8 Conclusion

Conclave shows that secure MPC on “big data” is feasible by automatically rewriting queries to min-
imize expensive MPC work. Conclave can automatically run queries that would have either been im-
practical with previous MPC frameworks, or would have required substantial domain-specific knowl-
edge to implement.

Conclave is open-source and available at:

https://github.com/multiparty/conclave.
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6 Distributed RSA Key Generation

6.1 Introduction

RSA [92] is one of the oldest, publicly known, public key encryption schemes. This scheme allows a
server to generate a public/private key pair, such that any client knowing the public key can use this
to encrypt a message, which can only be decrypted using the private key. Thus a server can disclose
its public key and keep the private key secret. This allows anyone to encrypt a message, which only
the server itself can decrypt. Even though RSA has quite a few years on its back, it is still in wide use
today such as in TLS, where it keeps web-browsing safe through HTTPS. Its technical backbone can
also be used to realize digital signatures and as such is used in PGP.

In this work we consider the setting of distributed RSA key generation in the crucial two-party
setting. Specifically this means that we consider two parties P1 and P2 whose goal is to generate an
RSA modulus of a certain length, such that the knowledge of the private key is additively shared
among them. Namely, the parties wish to compute the following:

Common input: A parameter ` describing the desired bits of the primes in an RSA modulus, and a
public exponent e.

Common output: A modulus N of length 2` bits.

Private outputs: P1 learns outputs p1,q1,d1, and P2 learns outputs p2,q2,d2, for which it holds that

• (p1 + p2) and (q1 +q2) are prime numbers of length ` bits.

• N = (p1 + p2) · (q1 +q2).

• e · (d1 +d2) = 1 mod φ (N).
(Namely, (d1 +d2) is the RSA private key for (N,e).)

Furthermore, our ultimate goal is to have the functionality to work (or abort) even if one of the parties
is not following the protocol. That is, in the malicious setting.

It turns out that all prior work follows a common structure for distributed RSA key generation.
Basically, what is generally done is simply to pick random, odd numbers, and hope they are prime.
However, the Prime Number Theorem tells us that many random prime candidates must be generated
before success. Pairs of prime candidates must then be multiplied together to construct a modulus
candidate. Depending on whether the tests of the prime candidates involve ensuring that a candidate
is prime except with negligible probability, or only that it is somewhat likely to be prime, the modulus
candidate must also be tested to ensure that it is the product of two primes. We briefly outline this
general structure below:

Candidate Generation: The parties generate random additive shares of potential prime numbers.

Construct Modulus: Two candidates are multiplied together to construct a candidate modulus.

Verify Modulus: This involves ensuring that the public modulus is the product of two primes.

Construct Keys: Using the additive shares of the prime candidates, along with the modulus, the
shared RSA key pair is generated.

With this overall structure in mind we consider the chronology of efficient distributed RSA key gen-
eration.
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6.1.1 Related Work

Work on distributed RSA key generation started with the seminal result of Boneh and Franklin [15]. A
key part of their result is an efficient algorithm for verifying biprimality of a modulus without knowl-
edge of its factors. Unfortunately, their protocol is only secure in the semi-honest setting, against
an honest majority. Several followup works handle both the malicious and/or dishonest majority
setting [90, 34, 41, 2, 24, 47, 39]. First Frankel et al. [34] showed how to achieve malicious secu-
rity against a dishonest minority. Poupard and Stern [90] strengthened this result to achieve security
against a malicious majority (specifically the two-party setting) using 1-out-of-β OT, with some al-
lowed leakage though. Later Gilboa [41] showed how to get semi-honest security in the dishonest ma-
jority (specifically two-party) setting. Both Algesheimer et al. [2] and Damgård and Mikkelsen [24]
instead do a full primality test of the prime candidates individually, rather than a biprimality test of
the modulus. Later Hazay et al. [47] introduced a practical protocol maliciously secure against a dis-
honest majority (in the two-party setting), which is leakage-free. More specifically their protocol is
based on the homomorphic encryption approach from Gilboa’s work [41], but adds zero-knowledge
proofs on top of all the steps to ensure security against malicious parties. However, they conjectured
that it would be sufficient to only prove correctness of a constructed modulus. This conjecture was
confirmed correct by Gavin [39].

6.1.2 Contributions

In this work we present two new protocols for distributed RSA key generation. One for the semi-
honest setting and one for the malicious setting. Neither of our protocols rely on any specific number
theoretic assumptions, but instead are based on oblivious transfer (OT), which can be realized effi-
ciently using an OT extension protocol [65, 85]. The malicious secure protocol also requires access
to an IND-CPA encryption scheme, coin-tossing, zero-knowledge and secure two-party computation
protocols. Using OT extension significantly reduces the amount of public key operations required by
our protocols. This is also true for the maliciously secure protocol as secure two-party computation
(and thus zero-knowledge) can be done black-box, based on OT.

We show that our maliciously secure protocol is more than an order of magnitude faster than
its most efficient semi-honest competitor [47]. In particular, a four thread implementation takes on
average 42 seconds to generate a maliciously secure 2048 bit key, whereas the protocol of Hazay et
al. [47] on average required 15 minutes for a semi-honestly secure 2048 bit key.

More concretely this is done by introducing a new ideal functionality which gives the adversary
slightly more (yet useless) power than normally allowed. This idea may be of independent interest as
it is relevant for other schemes where many candidate values are constructed and potentially discarded
throughout the protocol. We furthermore show how to eliminate much computation in the malicious
setting by allowing a few bits of leakage on the honest party’s prime shares. We carefully argue that
this does not help an adversary in a non-negligible manner.

We also introduce a new and efficient approach to avoid selective failure attacks when using
Gilboa’s protocol [41] for multiplying two large integers together. We believe this approach may
be of independent interest as well.

Finally we carefully construct the rest of out protocols in such a way that they take maximum
advantage of oblivious transfer recent OT extension papers [65, 85] has all but reduced this to a
symmetric primitive.
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6.1.3 Applications

When considering RSA, and public key encryption in general, in the distributed setting it turns away
from being simply a public key encryption scheme and into a primitive in itself used as a subcompo-
nent in more advanced constructions. For example in the setting of distributed signature schemes [96],
(homomorphic) threshold cryptosystems [47] and even general MPC [22].

There is also a case where distributed RSA key generation is an ends in itself, that is as a part
of a cryptographic key management system in an enterprise setting without the use of a Hardware
Security Module (HSM). HSMs are usually slow and expensive, and in general reflects a single point
of failure. For this reason several companies, such as Unbound and Sepior have worked on realizing
HSM functionality in a distributed manner, using MPC and secret-sharing. This removes the single
point of failure, since computation and storage will be distributed between physically separated ma-
chines, running different operating systems and having different system administrators. Thus if one
machine gets fully compromised by an adversary, the overall security of the generated keys will not
be affected.

Moving further into the realm of big data and data-mining, another setting arrives where the usage
of distributed public key generation really shines. This is a case of the client-server setting: Assume
we have large amounts of data coming from many different clients, thus it is not desirable to have
all the different input clients participate in an MPC execution. Ideally we would like these parties
to be able to preprocess their own data and allow this to be obliviously given as input to an MPC
computation carried out by a small number of servers. This is achievable if the clients can encrypt,
and send to the servers, their preprocessed data using a public key encryption scheme; assuming
servers have a secret sharing of the private key. Because the value held by the servers will be the same
it makes it possible to avoid using MACs and simply use a protocol along the lines of Cramer et al. to
do the MPC [22]. However, for popular schemes such as RSA or Paillier it is not easy to construct a
public key with a secret shared private key, as this requires distributed random prime generation.

6.2 Preliminaries

We use κ to denote the computational security parameter and s the statistical security parameter. We
use ` to denote the amount of bits in a prime factor of an RSA modulus. Thus ` ≥ κ . We use [a] to
denote the list of integers 1,2, . . . ,a. We will sometimes abuse notation and implicitly view bit strings
as a non-negative integer.

Our functionality relies heavily on oblivious transfer. For our setting we require a random 1-
out-of-β , meaning that one party, which we call the sender receives β random messages and the
other party, which we call the receiver, gets to pick only one of the random messages to learn. The
sender will not know which one the receiver picked and the receiver will not learn anything about
the messages it did not pick. In some cases we need the sender to be able to specifically choose its
messages. However, this is easily achieved by using the random OT-model as a black box and simply
sending β extra strings repressing the shift between the random messages and the true message.

6.3 The Protocols

6.3.1 High level description

Keeping the general structure of distributed RSA key generation protocols of Section 6.1.1 in mind,
we describe our maliciously secure protocol. Afterwards we will explain which steps we can do
without if semi-honest security is all that is desired.
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We start with a Setup phase. In this phase each party will commit to a random AES key K of its
choosing, by sending c=AESAESr(K)(0) for a random r (chosen by coin-tossing). This unusual double
encryption ensures that c is not only hiding K, through the encryption, but also binding to K. The key
K is then used to implement a committing functionality. This is done by using K as the key in an AES
encryption, where the value we want to commit to is the message encrypted. However, for our proof
to go through we require this commitment to be extractable. Fortunately this is easily achievable
if the simulator knows K and to ensure this we do a zero-knowledge argument of knowledge that
c = AESAESr(K)(0). By executing this zero-knowledge argument the simulator can clearly extract K
(assuming the zero-knowledge argument is an ideal functionality). This can be done highly efficiently
using garbled circuits [59].

Afterwards the Candidate Generation is executed where the two parties choose random shares p1
and p2, respectively, with the hope that p1+ p2 is prime. They commit to these values by computing an
AES encryption under their individual keys, picked in the setup phase, and exchanging the ciphertexts.
The parties then run a secure protocol, based on 1-out-of-β OT, which rules out the possibility that
p1+ p2 is divisible by any prime number smaller than some pre-agreed threshold B1 [90]. We call this
the first trial division. If p1 + p2 is not divisible by any such prime then it passed on to the next stage,
otherwise it is discarded.

On shares p1, p2 passing this check parties execute the Construct Modulus phase by executing
a secure protocol inspired by Gilboa [41]. This protocol is based on 1-out-of-2 OT and computes the
candidate modulus N = (p1 + p2)(q1 + q2) and returns this value to both parties. Gilboa’s protocol
allows two parties to compute an additive sharing of a product where each party holds a factor. For
example p1q2 = a1 + a2 where P1 is the receiver and gets a1 and P2 is the sender and gets a2. The
idea of Gilboa’s protocol is to execute a 1-out-of-2 OT for each bit of p1. For each OT P1 would
input a random value for choice 0 and the same random value for choice 1, but added to q2. The
receiving party would input a bit of p1 for each of the OTs. Based on the messages the receiver learns,
and the randomness the sender picks, it is possible for the parties to compute an additive sharing of
the product. With that at hand it is possible to compute an additive sharing of N by noticing that
N = (p1 + p2)(q1 +q2) = p1q1 + p2q2 + p1q2 + p2q1 and thus having P1’s share be p1q1 added with
its share of p1q2 and p2q1, computing using Gilboa’s protocol. Similarly for P2 its share is p2q2 added
with its shares of p1q2 and p2q1, computing using Gilboa’s protocol. Unfortunately Gilboa’s protocol
is only secure against semi-honest adversaries, even if a maliciously secure OT is used. The reason
is, as is often the case when OT is involved, selective failure vulnerabilities [68, 78]. Specifically,
what a malicious sender does is to guess that the receiver’s choice bit is 0 (or 1) in a given OT. In this
case, the sender inputs the correct message for choice 0, i.e. the random string. But for the message
for a choice of 1, it inputs the 0-string. If the sender’s guess was correct, then the protocol executes
correctly. However, if its guess was wrong, then the result of the Gilboa protocol, i.e. the modulus,
will be incorrect. If this happens then the protocol will abort during the proof of honesty. Thus, two
distinct and observable things happen dependent on whether the sender’s guess was correct or not and
so the sender learns a bit of the receiver’s input by observing what happens. In fact, the sender can
repeat this as many times as it wants, each time succeeding with probability 1/2 (when the receiver’s
input is randomly sampled). This means that with probability 2−x it can learn x of the receiver’s secret
input bits.

To prevent this attack we use the notion of noisy encodings. A noisy encoding is basically a
linear encoding with some noise added such that decoding is only possible when using some auxiliary
information related to the noise. We have the receiver noisily encode its true input to the Gilboa
protocol. Because of the linearity it is possible to retrieve the true output in the last step of the Gilboa
protocol (where the parties send their shares to each other in order to learn the result N) without

Sunday 30th September, 2018 D2.2 Application-Oriented MPC Protocols 70



H2020-LEIT-ICT 731583 SODA Deliverable D2.2

leaking anything on the secret shares of the receiver, even in the presence of a selective failure attack.
In a bit more detail, we define a 2−s-statistically hiding noisy encoding of a value a ∈ Z2`−1 as

follows:

• Let P be the smallest prime larger than 22`.

• Pick random values h1, . . . ,h2`+3s,g ∈ FP and random bits d1, . . . ,d2`+3s under the constraint
that g+∑i∈[2`+3s] hi ·di mod P = a.

• The noisy encoding is then (h1, . . . ,h2`+3s,g) and the decoding info is (d1, . . . ,d2`+3s).

Assume without loss of generality that P1 is acting as the receiver, then for each of its shares, p1
and q1, P1 noisily encodes as described and sends the noisy encodings (hp,1, . . . ,hp,2`+3s,gp) and
(hq,1, . . . ,hq,2`+3s,gq) to P2. Next, when they execute the OT steps, P1 uses the decoding info (dp,1, . . . ,
dp,2`+3s) and (dq,1, . . . ,dq,2`+3s) of p1 and q1 respectively and uses this as input the OTs instead of the
bits of p1 and q1. For each such bit of p1, P2 proceeds like in the regular Gilboa protocol and inputs to
the OT a random value for choice 0 and the same random value plus q2 for choice 1. It turns out that
leaking at most s bits of (dp,1, . . . ,dp,2`+3s) and (dq,1, . . . ,dq,2`+3s) to P2 does not give more than a 2−s

advantage in finding the value encoded. Thus, even if P2 launches s selective failure attacks it gains
no significant knowledge on P1’s shares.

After having completed the OTs, the parties compute their shares of the modulus N by using the
linearity of the encodings.

The parties then execute the Verify Modulus phase by first doing a second trial division. This is
done by locally checking that no primes smaller than a threshold B2 (B1 < B2) are a factors of N. If
N is divisible by such a number then N is definitely not a valid RSA modulus and is discarded. For
an N not discarded, the parties run a secure Biprimality Test which verifies that N is the product of
two primes. If it is not, it is discarded. The biprimality test is almost the same as the one presented by
Boneh and Franklin [15].

For the first candidate passing these tests a Proof of Honesty is executed. This phase has three
responsibilities: first, it is a maliciously secure execution of the full biprimality test of Boneh and
Franklin [15]; second, it verifies that the modulus is constructed from the values committed to in the
candidate generation phase. Finally it generates a random sharing of the private key. The proof of
honesty is carried out twice. Once where party P1 acts as the prover and P2 the verifier, and once where
P2 acts the prover and P1 the verifier. Thus each party gets convinced of the honesty of the other party
and learns their respective shares of the private key.

To ensure a correctly executed biprimality test, a typical zero-knowledge technique is used, where
coin-tossing is used to sample public randomness and the prover randomizes its witness along with
the statement to prove. The verifier then gets the option to decide whether he wants to learn the value
used for randomizing or the randomized witness. This ensures that the prover can only succeed with
probability 1/2 in convincing the verifier if it does not know a witness.

To ensure that the modulus was constructed from the values committed to, a small secure two-
party computation is executed which basically verifies that this is the case. Since the commitments
are AES-based, this can be carried out in a very lightweight manner. Furthermore, to ensure that the
values used in the maliciously secure biprimality test are also consistent with the shares committed
to, we have the prover commit to the randomization values as well and verify these, along with their
relation to the shares.

Finally, we let the proving party input some randomness which is used to randomize the verifying
party’s share of the private key.
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The ideal functionality. The ideal functionality that our protocol implements works by sampling
random primes congruent to 3 modulo 4 and secret key shares which are random and in the range
between −22`+s and 22`+s. When a party is corrupted the adversary is allowed certain freedoms
in its interaction with the ideal functionality. Specifically the adversary is given access to several
commands, allowing it and the functionality to generate a shared RSA key through an interactive
game. In particular the adversary is allowed to repeatedly query the functionality to sample primes,
based on its choice of a prime share. The adversary can then let the ideal functionality use these
primes to construct a modulus which it learns, along with its share of the secret key for this specific
modulus. Finally, the adversary can then decide which modulus it wishes to use.

We furthermore note that the functionality allows the adversary a few bits of leakage of the honest
party’s prime share. To see that this is not a problem assume that learning some extra bits on the
honest party’s prime shares would give the adversary a non-negligible advantage in finding the primes
of the modulus. This would then mean that there exists a polynomial time algorithm breaking the
security of RSA with non-negligible probability by simply exhaustively guessing what the leaked bits
are and then running the adversary algorithm on each of the guesses. Thus if the amount of leaked
bits is at most polylog in κ , then such an algorithm would also be polynomial time, and cannot exist
if RSA is secure.

6.3.2 Concrete Protocol

Below we describe the concrete protocol, which realizes this functionality, in more details:

Setup. The parties use a coin-tossing functionality to pick random values r1,r2 ∈ {0,1}κ . Both
parties pick a uniformly random key; K1 for party P1 and K2 for P2. For ι ∈ {1,2} party Pι computes
and sends AESAESrι (Kι )(0) = cι to P3−ι . Each party then proves towards the other that it knows Kι

such that AESAESrι (Kι )(0) = cι .

Candidate Generation. The parties P1 and P2 choose private random strings p1 and p2, respectively,
of length `− 1 bits, subject to the constraint that the two least significant bits of p1 are 11, and the
two least significant bits of p2 are 0 (this ensures that the sum of the two shares is equal to 3 modulo
4). For ι ∈ {1,2} party Pι sends AESKι

(pι) = Hpι
to P3−ι . The parties now check, for each prime

number 3≤ β ≤ B1, that (p1 + p2) 6= 0 mod β . We describe this in procedure Div-OT in Protocol 8.
The parties run this test for each prime 3 ≤ β ≤ B1 in increasing order (where B1 is the pre-agreed
threshold).

Construct Modulus. Once two numbers pass the previous test, the parties have shares of two can-
didate primes p1, p2 and q1,q2. They compute the candidate modulus

N = (p1 + p2)(q1 +q2) = p1q1 + p2q2 + p1q2 + p2q1.

Let P be the smallest prime larger than 22`. For each α ∈ {p,q} party P1 picks a list of values
hα,1, . . . ,hα,2`+3s,gα ∈ ZP and a list of bits dα,1, . . . ,dα,2`+3s ∈ {0,1} uniformly at random under the
constraint that gα +∑i∈[2`+3s] hα,i · dα,i mod P = α1. The parties execute the following steps for
each α ∈ {p,q} and i ∈ [2`+3s]:

1. P2 chooses a uniformly random value rα,i ∈ ZP and sets

c0,α,i = rα,i and c1,α,i =

{
rα,i +q2 mod P if α = p
rα,i + p2 mod P if α = q

.
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Protocol 8 Div-OT, 1-out-of-β OT based trial division procedure
The parties have common input β ∈ N and P1 has p1 ∈ N and P2 has p2 ∈ N. The procedure returns
⊥ iff β |(p1 + p2), otherwise it returns >.

1. P2 uses the 1-out-of-β OT as the sender to learn random messages {mi}i∈[β ].

2. P1 computes a1 = p1 mod β and gives a1 as input to the 1-out-of-β OT as the receiver and thus
learns ma1 .

3. P2 lets a2 =−p2 mod β and sends ma2 to P1.

4. P1 checks whether ma1 = ma2 and outputs ⊥ and sends it to P2 if this is the case, otherwise it
outputs > and sends this to P2.

2. P2 inputs c0,α,i,c1,α,i as the sender into a 1-out-of-2 OT.

3. P1 inputs dα,i as its choice-bit to the OT thus receives the message cdα,i,i.

P1 sends the values hα,1, . . . ,hα,2`+3s,gα to P2 for α ∈{p,q}. P1 then computes zα
1 =∑i∈[2`+3s] cdα,i,i ·

hα,i mod P and P2 computes zα
2 = −∑i∈[2`+3s] rα,i · hα,i mod P . Afterwards P2 computes a2 =

p2q2 + zp
2 +gp ·q2 + zq

2 +gq · p2 mod P and sends this to P1. Now P1 computes a1 = p1q1 + zp
1 + zq

1
mod P and sends this to P2. Both parties then compute N = (a1 +a2 mod P) mod 22`.

Some auxiliary info needs to be computed in order to construct shared keys for this modulus and
to ensure that gcd(e,Φ(N)) = 1. This consists of P1 computing w1 = N + 1− p1− q1 mod e and
similarly P2 computes w2 = p2 +q2 mod e. The parties then execute a random 1-out-of-β OT where
P2 acts as the sender and thus learns the random messages r0, . . . ,rβ−1 ∈ {0,1}κ . P1 acts as the receiver
and inputs w1 and thus learns rw1 . P2 then sends rw2 to P1. If rw1 = rw2 then P1 informs P2 of this and
they both discard the candidate N and its associated shares p1,q1, p2,q2.

Verify Modulus. The parties start with the second trial division which consists of one party trying
to divide N by all primes numbers in the range B1 < β ≤ B2. If one is a factor then the parties discard
the candidate. The parties then carry out the biprimality test on N of Protocol 9, which is inspired
by [15].

Proof of Honesty. The parties proceed as follows, once where P1 takes the role of a prover and P2
takes the role of a verifier, and once where P2 takes the role of a prover and P1 takes the role of a
verifier. We use subscript P to denote the number of the proving party, similarly we use subscript V to
denote the number of the verifying party e.g. when P1 is the prover pP := p1, qP = q1,KP := K1 and
when P2 the verifier then pV := p2, qV = q2,KV := K2:

1. The parties execute step 1 of the biprimality test of Protocol 9 again, but this time using a coin-
tossing functionality to sample the values γ (we denote the γ used in the i’th iteration by γi and
γi,P to denote the value γP sent in the i’th iteration, for i ∈ [s]).

2. For j ∈ [s] the prover picks a random value t j ∈ {0,1}`−2+s. It then computes AESKP(t j) = Ht j

and sends this to the verifier.

3. For each i, j ∈ [s], the prover then sends the values γ̄i, j = γ
t j
i mod N to the verifier.
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Protocol 9 Biprimality Test
The parties have common input N ∈N. The procedure returns> if N is a biprime, otherwise it returns
⊥ with overwhelming probability.

1. The parties execute following test s times.

(a) P1 samples a random value γ ∈ Z×N with Jacobi symbol 1 over N.

(b) P1 sends γ to P2.

(c) P1 computes γ1 = γN+1−p1−q1 mod N and sends this value to P2.

(d) P2 checks if γ1 · γ−p2−q2 mod N 6=±1. In this case P2 sends ⊥ to P1 and the parties break
the loop and discard the candidate N.

2. The parties verify that gcd(N, p+q−1) = 1.

(a) P1 chooses a random number r̄1 ∈Z2`+2s and P2 chooses a random r̄2 ∈Z2`+2s . P1 computes
AESK1(r̄1) = Hr̄1 and sends this to P2 and P2 computes AESK2(r̄2) = Hr̄2 and sends this to
P1. (The parties will verify that (r̄1 + r̄2)(p+q−1) mod 22`+2s+2 = 1.)

(b) The parties run a multiplication protocol (similar to that run in the “Construct Modulus”
phase) where they compute shares α1,α2 (known to P1,P2 respectively) of r̄1 ·(p2+q2−1)
mod 22`+2s+2, and shares β1,β2 of r̄2 · (p1 +q1) mod 22`+2s+2.

(c) P1 sends to P2 the value s1 = r̄1(p1 +q1)+α1 +β1 mod 22`+2s+2.

(d) P2 computes s2 = r̄2(p2 + q2− 1)+α2 +β2 mod 22`+2s+2, and verifies that gcd(s1 + s2
mod 22`+s+2,N) = 1. If this is not the case then it sends ⊥ to P1 and discard the candidate
N.

4. The parties then use a coin-tossing functionality to sample uniformly random bits b1, . . . ,bs ∈
{0,1}. For each j ∈ [s], the prover then sends v j = b j · (−pP−qP)+ t j to the verifier.

5. For each i, j ∈ [s] the verifier checks that

γ
v j
i mod N =?

γ̄i, j · γ
b j
i,P · γ

−b j·(N+1)
i mod N

If this is not the case then the parties abort.

6. The prover picks a uniformly random value ρP ∈ {0,1}2`+s and both parties then execute a se-
cure two-party computation which takes as common input the values sent between the two par-
ties throughout the protocol for this specific modulus N. The private input is (pP,qP,KP, r̄P,ρP)
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and (pV ,qV ,KV , r̄V ). The computation is as follows:

w : = N +1− (pP +qP + pV +qV ) mod e ,

χ : = (HpP =
? AESKP(pP))∧ (HqP =

? AESKP(qP)) ∧ (cP =? AESAESrP (K1)(0))

∧ (HpV =? AESKV (pV ))∧ (HqV =? AESKV (qV )) ∧ (cV =? AESAESrV (KV )(0))

∧ (∀ j ∈ [s] : AESKP(v j +b j · (pP +qP)) =
? Ht j)

∧ (N =? (pP + pV ) · (qP +qV )

∧w 6= 0

if P1 is verifier : d̃V :=
⌊
−(w−1 mod e) · (N +1− (p1 +q1))+1

e

⌋
else : d̃V :=

⌊
−(w−1 mod e) · (−p2−q2)

e

⌋
if χ = 1 :d̄V := d̃V −ρP,ψ := gcd(N, pP + pV +qP +qV −1) =? 1

else : d̄V =⊥,ψ =⊥
Output (χ,ψ, d̄V ) to the verifier and (⊥) to the prover

The parties abort if χ = 0.

Construct Keys. P1 computes and outputs d1 = d̄1+ρ1. If e|− p2−q2 then P2 computes and outputs
d2 = d̄2 +ρ2, else it computes and outputs d2 = d̄2 +ρ2 +1.

6.3.3 Semi-honest Protocol

We note that if only semi-honest security is desired it is possible to execute almost the same protocol,
except for the following differences:

• The underlying OT functionality only needs to be semi-honestly secure.

• All the AES encryptions can be removed.

• The setup and proof of honest phases can be skipped.

• The noisy encoding used in the multiplication is not needed as there is no need to prevent
selective failures in a semi-honest execution.

6.4 Efficiency

We here try to compare the efficiency of our protocol with previous work. This is done in Table 5.
With regards to more concrete efficiency we recall that both our malicious and semi-honest pro-

tocols, along with previous work have the same type of phases, working on randomly sampled can-
didates in a pipelined manner. Because of this feature, all protocols limit the amount of unsuitable
candidates passing through to the expensive phases, by employing trial division. This leads to fewer
executions of expensive phases and thus to greater concrete efficiency. In some protocols this filtering
is applied both to individual prime candidates and to candidate moduli, leading to minimal execu-
tions of the expensive phases. Unfortunately this is not possible in all protocols. For this reason we
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Our result∗ IND-CPA,
OT, CT X X X X O(1)O(1)O(1) O(`2/ log2(`)) O(`)O(`)O(`) O(`2)O(`2)O(`2) O(s · `3) τ +2

[15] None 7 7 X X O(1)O(1)O(1) O(`2/ log2(`)) O(`)O(`)O(`) O(`2)O(`2)O(`2) O(s · `3) 2
[34] DL 7 X 7 X O(1)O(1)O(1) O(`2/ log2(`)) O(`3) O(`3) O(s2 · `3) 2
[90]† OT X X X X O(1)O(1)O(1) O(`2/ log2(`)) O(`)O(`)O(`) O(`2)O(`2)O(`2) ? τ +2
[41] PRG, OT X 7 7 X O(1)O(1)O(1) O(`2/ log2(`)) O(`)O(`)O(`) O(`2)O(`2)O(`2) O(s · `3) 2
[2] None 7 7 X 7 O(`) O(`/ log(`))O(`/ log(`))O(`/ log(`)) O(`)O(`)O(`) O(`2)O(`2)O(`2) O(s · `3) 2

[24] CRS, Strong
RSA 7 X X X O(1)O(1)O(1) O(`2/ log2(`)) O(`3) O(`3) o(s · `3)o(s · `3)o(s · `3) 2

[47] DCR, DDH X X X X O(1)‡ O(`2/ log2 `) O(`3) O(`3) O(s · `3) 2

Table 5: Comparison of the different protocols for distributed RSA key generation. The best possible values are highlighted in bold. All values assume a
constant, and minimal, amount of participating parties; i.e. 2 or 3. The column Amount of candidates expresses the expected amount of random candidates
that must be generated before finding a suitable modulus. The column Candidate generation expresses the computational bit complexity required to construct
a single candidate prime. The column Construct modulus expresses the computational bit complexity required to construct a single potential modulus, based
on two prime candidates. The column (Bi)primality test expresses the computational bit complexity required to verify that a single prime candidate is prime
except with negligible probability or (depending on the protocol) to verify that a single modulus is the product of two primes except with negligible probability.
The column Leakage expresses how many bits of information of the honest party’s shares of the primes that is leaked to the adversary. Here τ means that

∑β∈B1
log
(

β

β−1

)
bits can be leaked to a malicious adversary. Furthermore, the adversary is allowed to pick a probability x with which it learns (1+ ε)x extra

bits. However, if the adversary does not learn the extra bits then the honest party learns that the adversary has acted maliciously.
∗: For the malicious protocol O(s2 · `3) operations are executed once per successful key pair generation.
†: The authors do not describe how to ensure biprimality in case of a malicious adversary.
‡: Constant round on average.
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also show in Table 5 which protocols manage to improve the expected execution time by doing trial
division of the prime candidates, respectively the moduli.

We see that the only real competition lies in the work of Poupard and Stern [90]. However, we
note that they don’t provide a full maliciously secure protocol. In particular they do not describe
how to do a biprimality test secure against a malicious and dishonest majority. Thus the only other
protocol considering the same setting as us is the one by Hazay et al.. This is also the newest of the
schemes and is considered the current state-of-the-art in this setting. However, this protocol requires
asymptotically more operations for candidate generation, construction of modulus and the biprimality
test.

6.4.1 Implementation.

Below we outline the concrete implementation choices we made. We implement AES in counter
mode, using AES-NI, with κ = 128 bit keys. For 1-out-of-2 OT (needed during the Construct Modulus
phase) we use the maliciously secure OT extension of Keller et al. [65]. For the base OTs we use the
protocol of Peikert et al. [89] and for the internal PRG we use AES-NI with the seed as key, in counter
mode. For the random 1-out-of-β OT we use protocol of Naor and Pinkas [80]. For the coin-tossing
we use the standard “commit to randomness and then open” approach.

We did not yet implement the zero-knowledge argument or the two-party computation since they
can be efficiently realized using existing implementations of garbled circuits (such as JustGarble [8]
or TinyGarble [97]) by using the protocol of Jawurek et al. [59] for zero-knowledge and the dual-
execution approach [78] for the two-party computation. These protocols are only executed once in
our scheme and thus, as is described later in this section, we can safely estimate that the effect on the
total run time is marginal.

6.4.2 Experiments.

We implemented our maliciously secure protocol and ran experiments on Azure, using Intel Xeon
E5-2673 v.4 - 2.3Ghz machines with 64Gb RAM, connected by a 40.0 Gbps network.

We used the code to run 50 computations of a shared 2048 bit modulus, and computed the average
run time. The results are as follows:

• With a single threaded execution, the average run time was 134 seconds.

• With four threads, the average run time was 39.1 seconds.

• With eight threads, the average run time was 35 seconds.

The run times showed a high variance (similar to the results of the implementation reported by
Hazay et al. [47] for their protocol). For the single thread execution, the average run time was 134
seconds while the median run time was 84.9 seconds (the fastest execution took 8.2 sec and the slowest
execution took 542 sec).

Focusing on the single thread execution, we measured the time consumed by different major parts
of the protocol. The preparation of the OT extension tables took on average 12% of the run time, the
multiplication protocol computing N took 66%, and the biprimality test took 7%. (These percentages
were quite stable across all executions and showed little variance.) Overall these parts took 85% of
the total run time. The bulk of the time was consumed by the secure multiplication protocol. In that
protocol, most time was spent on computing the values zα

1 ,z
α
2 (as part of the Construct Modulus
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phase). This is not surprising since each of these computations computes 2`+ 3s = 2168 bignum
multiplications.

Note that these numbers exclude the time required to do the zero-knowledge argument of knowl-
edge in Setup and the two-party computation in Proof of Honesty. The zero-knowledge argument of
knowledge requires about 12,000 AND gates (for two AES computations), and our analysis shows
that the number of AND gates that need to be evaluated in the circuits of the honesty proof is at most
22 million. We also measured a throughput of computing about 3.2 million AND gates in Yao’s proto-
col on the machines that we were using. Therefore we estimate that implementing these computations
using garbled circuits will contribute about 7 seconds to the total time.

Comparing to previous work, the only other competitive protocol (for 2048 bit keys) with imple-
mentation work is the one by Hazay et al. [47]. Unfortunately their implementation is not publicly
available and thus we are not able to make a comparison on the same hardware. However, we do not
that the fastest time they report is 15 min on a 2.3 GHz dual-core Intel desktop, for their semi-honestly
secure protocol.
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