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Executive Summary

The objective of work package 2 is to improve the state of the art in privacy-preserving data mining
protocols for use with big data, focusing on distributed and streaming algorithms. This deliverable
provides a background on privacy-preserving data mining primitives, (plain-text) data mining, strea-
ming algorithms and surveys previous works on privacy preserving data mining. Chapter 2 discusses
preliminaries and primitives required for privacy preserving computation. We focus on primitives
which are used as building blocks in privacy-preserving data mining, such as secure comparison, se-
cure shuffling, and private set intersection. Chapter 3 provides a background on the field of machine
learning in the plain-text setting. Chapters 4 and 5 discuss data streams, which are relevant especially
in the context of big data analysis. Chapter 4 focuses on the evolving nature of data streams, introdu-
ces the notion of concept drift, and discuss adaptive strategies to deal with those, while Chapter 5 gives
some history and a theoretical introduction into some classical data stream problems. The inclusion
of streaming algorithms within the SODA project originates from their seeming absence in privacy-
preserving data-mining literature. Chapter 6 of this state-of-the-art deliverable gives an overview
of prominent existing solutions of MPC-based privacy-preserving data mining. From this literature
study we confirm our suspicion regarding the lack of works on privacy-preserving data mining in the
streaming setting. So we believe there is sufficient opportunity for further research.
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About this Document

Role of the Deliverable

This deliverable contains a state of the art analysis in MPC-based privacy-preserving data mining
protocols for use with Big Data.

Relationship to other SODA Deliverables

This state-of-the-art deliverable will serve as a basis for further research on both general- and special-
purpose protocols in MPC-based privacy-preserving data mining, which will be presented in deliver-
able D2.2 and D2.3 respectively. Deliverable D1.1 also contains a state of the art analysis but focuses
on theory and practice of secure multi-party computation, including a survey on oblivious RAM and
oblivious data structures that are used in privacy-preserving data mining.

Structure of this Document

Chapter 1 provides an introduction to this document. Chapter 2 introduces secure computation of
primitives required for machine learning functionality. Chapter 3 discusses the state of the art of data
mining and machine learning without the notion of security or privacy. Chapter 4 and Chapter 5
introduce the streaming setting data mining. Chapter 6 reviews state of the art protocols used in
privacy preserving data mining.
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1 Introduction

It is estimated that by 2020 we will have more than 16 zettabytes (1.6 · 1013 GB) of useful data
in the world [98]. To mine such vast quantities of data for valuable information effectively, data
mining strategies specifically designed to handle Big Data are of great importance. Over the past
decades, research in data mining and machine learning has yielded many useful algorithms for this
task. While these algorithms are usually designed to run on cleartext data, in practice many data sets
are highly privacy-sensitive and/or confidential. Genomic records, for example, could reveal whether
an individual carries certain diseases. When data is shared outside an organization (e.g., to run some
machine learning algorithm in the cloud) data is typically anonymized, to prevent unwanted leakage
of privacy-sensitive and confidential information. Unfortunately, it turns out to be extremely tricky to
properly anonymize data while preserving utility [19]. More than once, researchers have succeeded in
de-anonymizing “anonymized” data after it was published [199, 23, 79]. While these events boosted
the formal study of anonymization (research into methods like k-anonymity and differential privacy),
there are alternatives to anonymization for protecting the privacy or confidentiality of data.

In the Work Package associated to the present deliverable (SODA WP2), we focus on a class of
data mining methods that leverage techniques from the field of cryptography, like secure multiparty
computation (MPC), to keep their data secure. In MPC, a number of parties can jointly perform
a computation on data (provided by some or all the parties), such that each party learns nothing
beyond what can be deduced from the output of the computation. MPC offers very strong privacy and
confidentiality properties.

In 2002, Lindell and Pinkas [170] were among the first to discuss the feasibility of privacy-
preserving data mining by means of secure multi-party computation. In particular, the authors focus
on a secure (i.e., privacy-preserving) version of the ID3 decision tree construction algorithm in the
two-party setting. Since then, many works have appeared on the cryptographic approach to privacy-
preserving data mining (too many to cover them all), of significantly varying quality. Most of these
works are based on one of the following paradigms within MPC, namely homomorphic encryption,
garbled circuits and secret sharing, which each have their own use case (number of parties, network
latency and bandwidth vs. computational complexity) and come with different practical pros and cons.

In the present document, we attempt to give an overview of the state of the art of MPC-based
privacy-preserving data mining. We first introduce the field of data mining and machine learning as
well as relevant MPC primitives, after which we present a selection of papers from the literature that
seem relevant for discussion and could serve as a foundation for further research on the subject. Each
such paper is accompanied by a brief review. One motivation for the SODA project was the seeming
lack of works of secure data mining in the streaming setting. Our literature study indeed further
confirms this gap in the state of the art; hence, we put special emphasis on introducing the topic of
streaming data mining in this document, and we remain convinced that secure streaming data mining
provides ample opportunities for further study.

The document is structured as follows. Chapter 2 introduces secure computation of primitives
required for machine learning functionality, such as arithmetic, comparison and set intersection. Here
we focus on previous work on such primitives in the secure-computation setting. To combine the
knowledge of MPC to the field of data mining, Chapter 3 discusses a state of the art of data mining
and machine learning without the notion of security or privacy. Chapters 4 and 5 present a basic
overview of data streams. The techniques applied in this field are promising with regards to mining
‘Big’ data. Streaming algorithms are tailored to limit the memory footprint, assuming that the data
does not fit in memory. These ideas originate from hardware constraints in the beginning of the late
1970s. Such notions are relevant once again in the age of Big data, for which it is infeasible to keep
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everything in memory. We proceed by reviewing privacy preserving data mining in Chapter 6. The
chapter starts with an overview of privacy preserving data mining in general, and the role of secure
multi-party computation therein. We continue by focusing on prominent papers in the field of privacy
preserving data mining and machine learning by means of secure multi-party computation. For each
paper we present a short summary including their main goal(s), technique(s), and trade-offs involved.
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2 Secure Multiparty Computation: Preliminaries and Primitives

In this section we discuss several aspects and primitives from MPC that are relevant in the context
of data mining algorithms: basic arithmetic, linear algebra, and important primitives like comparison,
shuffling and sorting, and higher-level primitives like private set intersection. This section aims to be
complementary to the material presented in SODA Deliverable D1.1; most basic MPC primitives are
explained in more detail in that document.

2.1 Secure Arithmetic

Essentially all multiparty computation paradigms (based on arithmetic secret sharing, garbled circuits,
or homomorphic encryption) offer integer arithmetic in some finite ring or finite field.1 Instead, many
practical applications, such as data-mining algorithms, require arithmetic over the integers, rationals,
or reals (in fact, approximations thereof, like fixed-point or floating-point numbers). Hence, an impor-
tant question in secure data mining is how to emulate arithmetic over the integers, rationals, or reals
using the ring or field operations provided by the MPC framework.

2.1.1 Arithmetic over the Integers

The ring of integers modulo m, where m is an arbitrary positive integer immediately gives “integer
arithmetic bounded by m”, by which we mean that one can perform additions and multiplications as
long as all operands remain strictly smaller than m, to prevent reductions modulo m (called “wrap-
arounds”). Wrap-arounds should be prevented from happening, because after a wrap-around the one-
to-one correspondence between integer-arithmetic and modular arithmetic is lost. Addition of any
nonzero k-bit and any `-bit number with k≥ ` gives an n-bit result with n ∈ {k,k+1}. Multiplication
of any nonzero k′-bit and any nonzero `′-bit number gives an n′-bit result with n′ ∈ {k′+`′−1,k′+`′}.
This implies that, for example, in an algorithm that performs repeated multiplications, the bit-length of
the multiplicand grows rapidly: linearly or even exponentially. On the other hand, for practical reasons
(performance-related) m cannot be chosen arbitrarily large (it is limited to, say, a few thousands of
bits). Hence, the goal of avoiding wrap-arounds might impose limits elsewhere, e.g., on the number
of iterations of an algorithm that may be executed.

If the modulus m is prime, then the finite ring is in fact a field, and in this case exact divisions can
be performed by multiplying with the modular inverse of the divisor. Non-exact divisions are much
more involved; they form the basis for fixed-point arithmetic and will be covered in Section 2.1.3.
Some algorithms exploit knowledge about the presence of multiplicative factors, which can then be
divided out, in order to limit coefficient-growth. An example is Jordan’s fraction-free Gaussian elimi-
nation algorithm [24].

2.1.2 Rational Arithmetic

A generalization of integer arithmetic is to mimic secure exact rational arithmetic by maintaining two
secret integers, one for the numerator and one for the denominator.

Although the arithmetic operations for the secret-rational-number type are straightforward to de-
fine in terms of the operations for the secret integers, the issue of rapid coefficient-growth is also

1For an introduction into finite rings and fields, the reader is referred to Serge Lang’s algebra textbook [163].
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present here. Furthermore, reducing fractions by removing common factors (common to the numera-
tor and denominator) involves divisibility tests, which are expensive operations in secure computation,
unlike in the non-secret setting.

The coefficient-growth issue could be avoided by using fixed-point arithmetic (see below), at the
expense of introducing round-off errors and an increased computational and round complexity.

2.1.3 Fixed-Point Arithmetic

Protocols for secure fixed-point arithmetic were introduced in a series of papers by Catrina et al.
[50, 51, 49]. In their representation, a tuple (x, f ) ∈ Z2 represents the value x · 2− f ∈ Q, where 2− f

is called the precision. Addition and multiplication are defined for any two inputs that have the
same precision, and are achieved by ordinary secure integer addition and multiplication followed by
a truncation, in order to lower the precision of the result towards that of the inputs. An important
choice with respect to the selection of the truncation protocol is whether the least significant bit of
the truncated result must be correct (deterministic rounding) or is allowed to be random (probabilistic
rounding). In the former case, truncation involves secret comparison and is rather expensive in terms
of round complexity, whereas in the latter case, the truncation procedure is cheaper but the rounding
error will accumulate over multiple arithmetic operations. Catrina et al. also propose secure division
protocols, based on Newton–Raphson and Goldschmidt methods [50, 51, 49].

2.1.4 Floating-Point Arithmetic

By now, several ways to achieve secure floating-point arithmetic have been proposed in the literature.
Franz et al. [108] consider the two-party setting and propose a logarithm-based representation of
numbers, which makes multiplication and division rather easy, while renders addition and subtraction
into more involved operations. This approach uses a table-based design which means that the bit-
size for which the approach is usable is limited (up to ≈ 20 bits, according to the authors). In his
doctoral thesis [107], Franz also proposes protocols (for the 2-party case) for dealing with floating-
point arithmetic resembling the IEEE 754 standard [132], using garbled circuits.

Aliasgari et al. [12] propose a floating-point representation and associated protocols for arithme-
tic operations for secret-sharing-based multiparty computation. In their approach, the four-tuple
( f ,e,s,z) ∈ [2`−1,2`]× (−2k−1,2k−1)×{0,1}×{0,1} represents the value (1− z)(−1)s f e ∈R. Note
that zero is encoded explicitly using the bit z. Beyond supporting the basic arithmetic operations, they
propose protocols for logarithm, square root and exponentiation. Subsequent work of Aliasgari et al.
[11] further improves the exponentiation operation.

Liu et al. [175] as well as Kamm and Willemson [143] propose protocols for a floating-point re-
presentation similar to the one above but without an explicit zero bit. Liu et al. focus on the two-party
case. Kamm and Willemson target focus on the multi-party case and, in particular, use polynomial
evaluation to approximate several non-linear functions. Krips and Willemson [160] propose an optimi-
zation to mix floating-point with fixed-point arithmetic to achieve a better trade-off between precision
and speed when computing elementary functions.

Pullonen and Siim [218] combine secret sharing and garbled circuits to achieve secure floating-
point arithmetic for the multi-party case. Two non-colluding coalitions of players execute the garbler
and evaluator part of the garbled-circuit computation. In particular, they achieve a fully compliant
secure IEEE 754 floating-point implementation by compiling an existing IEEE 754 soft-float imple-
mentation into a circuit, which can then be garbled.
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Dimitrov et al. [80] propose alternative approaches to fixed-point and floating-point numbers, re-
spectively, namely Golden numbers (based on the golden ratio) and a logarithm-based representation.

2.2 Secure Linear Algebra

Linear algebra is the basis for many applied problems, such as optimization, machine learning, and
network analysis. Solving a linear system of equations Ax = b is one of the fundamental primitives
in linear algebra. For the case where this equation is to be interpreted over a finite field, Cramer and
Dåmgard [65] provide a protocol which accomplishes this for any A and b arbitrarily secret-shared
between any number of parties. Their protocol takes a constant number of rounds and requires roughly
`5 secure multiplications[66], if A ∈ Kk×` with k ≤ `. It works except for with negligible probability,
assuming the field K is large (specifically, that `�|K|). In their construction, they directly use generic
MPC protocols for secure addition, multiplication, and sharing a random element as primitives without
making any cryptographic assumptions. Hence their construction is unconditionally secure (or secure
against an active adversary, respectively), if the underlying primitives are. Cramer, Kiltz and Padró
[66] give an improvement that only requires k4 + `2k secure multiplications.

In the case of two semi-honest parties in the computational model, various protocols that solve li-
near equations, over finite fields, exist. Most use either garbled circuits and/or additive homomorphic
encryption. Nissim and Weinreb [203] use a combination of the two for oblivious Gaussian elimina-
tion with communication complexity roughly O(k2) and round complexity (k0.275). Kiltz et al. [152]
give an improvement that lowers the round complexity to O(logk).

Mohassel and Weinreb [190] give a constant round protocol for deciding matrix singularity with
communication O(`2+1/t) for every constant t. Their protocol is unconditionally secure against a ma-
licious (honest-but-curious) adversary controlling up to one third (one half) of the parties. Security
is guaranteed except for with negligible probability if `2 � |K|. Assuming public key additive ho-
momorphic encryption, the protocol is also secure against a covert adversary, which roughly means
that cheating will be detected with some “good” probability, that controls a majority of the parties.
Using reductions from Kiltz et al. [152], an efficient solution for solving a linear system of equations
is possible.

When A is symmetric and positive-definite, Cholesky decomposition is often used to calculate
solutions of the system. However, Gascón et al. [116] point out that the cubic cost in the dimension
of A can be prohibitive, and that for large matrices an iterative method is preferable. They give
a modified version of the Conjugate Gradient Descent (CGD) algorithm that improves numerical
stability for fixed-point arithmetic, which is easier than floating-point arithmetic to perform securely.
For performing the CGD algorithm securely in the two-party semi-honest case, the authors suggest a
garbled circuit approach. The authors also give a verification protocol to check whether the output is
correct in presence of a malicious adversary; however, as they mention, this does not prevent malicious
attacks such as selective failure [130].

Another essential functionality in linear algebra is computing the eigenvectors and eigenvalues of
a matrix, which is used for example in PageRank, data compression and principal component analysis
(PCA). While there are numerous proposed solutions [125, 248, 57], none of these have a formal
simulation-based security proof, which makes it hard to reason about their security properties.

Sharemind implements several of these linear algebra primitives, including LU decomposition and
securely computing rank [34]; and computing eigenvalues and eigenvectors for 3×3 matrices [143].

In the verifiable outsourcing model, where a client outsources an expensive computation to a ser-
ver and receives the result along with the proof that the computation was executed correctly, Zhang
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and Blanton [256] give a protocol for square `× ` matrix multiplication which requires O(`2) crypto-
graphic operations for the client and O(`3) work for the server.

2.3 Secure Comparison

Secure comparison was one of the first proposed applications of MPC. Namely, Yao introduced MPC
with the so called Millionaires Problem: Two millionaires meet on the street and decide to determine
who has the largest fortune. Concerned with their privacy, they want to determine this without revea-
ling the exact amounts of their riches. In other words, the Millionaires Problem reduces to securely
evaluating the predicate A > B, for numbers A and B denoting the amount of the millionaires wealth
respectively.

The applications of secure comparison though goes far beyond the Millionaires problem. Appli-
cations range from simple computational building blocks such as search and sorting to more complex
applications such as auctions, data mining and optimization problems.

In this section we will present a few of the best known approaches to secure comparison and their
trade-offs. Specifically, we will present protocols for two types of integer comparison namely the
equality (=) operations and the larger than (>). We note that this is with out loss of generality as
given these predicates we can obtain all the usual integer comparison predicates (≤,≥,<) by either
negation or by switching the arguments.

We will focus on protocols that can be applied given a general MPC scheme. I.e., protocols
that can be instantiated using MPC schemes that can evaluate any circuit. This means that the security
provided by the described protocols is inherited by the concrete MPC scheme used to instantiate them.
We do however distinguish comparison protocols for MPC schemes working on Boolean circuits from
protocols for MPC over arithmetic circuits.

We describe the complexity of the protocols in terms of the number of non-linear operations to
be securely evaluated, i.e., AND and multiplications in Boolean and arithmetic circuits respectively.
These operations in most known MPC protocols require communication between the parties, meaning
that the communication complexity of the overall protocol is proportional to the number of these ope-
rations. On the other hand linear operations, XOR and addition, can usually be done non-interactively.
Additionally, we will note the depth of the circuit needed for evaluating the comparison. For MPC
protocols that are inherently constant round (such as the various garbling schemes) this metric is not
very important, however, for many MPC protocols (e.g., those based on secret sharing) circuit depth
translates to round complexity of the overall protocol. In the following all computations are done
securely using MPC unless stated otherwise.

Boolean MPC

In the Boolean setting Kolesnikov et al. [159], give general Boolean circuit constructions for a number
of basic integer operations. These constructions are size optimized for MPC using garbled circuits in
the sense that they minimize the use of AND operations, not the depth of the circuit. Their construction
for the equality predicate computes equality between two bits x and y in the straightforward manner
as x⊕ y⊕ 1. To compute equality of ` bit numbers x = x`,x`−1, . . . ,x1 and y = y`,y`−1, . . . ,y1 they
compute the AND of the bitwise equalities, i.e.,

∧̀
i=1

xi⊕ yi⊕1.
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Doing this in a tournament tree fashion this leads to ` secure AND operations and log(`) depth, for
equality.

The larger than operator for single bits can be computed as (x ∧ y)⊕ x. For ` bit numbers
x = x`,x`−1, . . . ,x1 and y = y`,y`−1, . . . ,y1, we can then use that x > y if either x` > y` or x` = y`
and x′ > y′ where x′ and y′ are the numbers made up of the `− 1 least significant bits of x and y
respectively. Following this observation Kolesnikov et al. propose computing the comparison by
iteratively computing

c` = (c`−1⊕ x`)∧ (c`−1⊕ y`)⊕ x`

where ci for i = 1, . . . `−1 is the comparison of the i least significant bits of x and y and c0 = 0. Using
this approach uses only ` secure AND operations, but the sequential computation of the ci bits leads
to depth `.

Alternatively, Garay et al. [115] describe an approach to computing x > y using a circuit of depth
log(`) and approximately 3`− log(`)−2 AND operations. This approach is based on the observation
that x > y if either x> > y> or x> = y> and x⊥ > y⊥, where x>,y> and x⊥,y⊥ are the `/2 most and
least significant bits of x and y respectively. Thus the comparison can be computed by recursively
computing c>⊕ (e>∧ c⊥), where c>← x> > y> and c⊥← x⊥ > y⊥ and e>← x> = y>. Computing
c> and c⊥ recursively results in a recursion tree where at the ` leaves single bit comparison can be
done using ` ANDs with the method described above. In each of ` internal nodes one equality and
AND must be computed. Using the observation that some of the equalities can be reused we get to
the complexity of 3`− log(`)−2.

Arithmetic MPC

Secure comparison in the arithmetic setting is more difficult than the Boolean setting as there is no
clear arithmetic way to express the comparison operation. In this section we present two sets of
protocols for secure comparison in the arithmetic setting that both work over a field Zq but emulate
Boolean protocols using the elements 0,1 ∈ Zq to represent bits. We note that using this approach we
can given two bits a and b compute AND and XOR arithmetically as ab and a+b−2ab. All protocols
in this setting require the underlying MPC scheme to be reactive, meaning that intermediate values in
the secure computation can be revealed, computed on in the clear and then put back into the secure
computation. The protocols in this section use this technique to limit the complexity by doing much
of the computation in the clear. This reactive property is one shared by most secret sharing based
MPC schemes in the arithmetic setting.

Lipmaa and Toft [173] rely on a technique of essentially generating a random mask r ∈ Zq along
with its bit representation r1, . . . ,r` ∈ {0,1} ⊂ Zq, where ` is the bit length of elements in Zq and
r = ∑

`
i=1 2iri.

To compute the equality x = y for they first compute m = (x− y)+ r for an r computed as above.
As m masks a = (x− y) using the random r it is safe to reveal m and extract its bit representation
m1, . . . ,m` in the clear. The equality then reduces to computing whether s = ∑

`
i mi⊕ ri = 0, as this

implies m = r and in turn a = 0 and x = y. This reduces the problem to the equality check s = 0, for
an s≤ `. This can be done by securely by evaluating P̀ (s) where P̀ is the degree ` polynomial so that
P̀ (0) = 1 and P̀ (x) = 0 for all x ∈ {1, . . . , `−1}. Since the bits mi and the coefficients of P̀ are public
most of the protocol can be evaluated locally using linear operations. Only O(`) secure multiplications
in O(1) rounds are needed to compute P̀ (s) and to generate r along with its bit representation. Lipmaa
and Toft [173], use a clever trick to preprocess the evaluation of P̀ meaning the majority of the work
can be done in preprocessing. The online phase of the protocol only uses a single secure multiplication
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and three rounds in total. Additionally, if the bit length of a is upper bounded by some k << ` the
complexity can be improved to O(k) multiplications.

Lipmaa and Toft further use their equality check protocol in a protocol to compute the comparison
x > y, using O(`) multiplications O(1) rounds in preprocessing and O(log(`)) multiplications and
rounds online. We here give a rough intuition of this protocol. The protocol uses a recursive method
very similar to the method of Garay et al. above. However, instead of computing the expression
c>⊕ (e> ∧ c⊥), by computing the entire recursion tree, they compute only along a single path of
length O(log(`)). The intuition being to first compute e> and then only compute the comparison
x′ > y′ where x′ = e>(x⊥− x>)+ x> and y′ = e>(y⊥− y>)+ y>. This gives the above complexity as
the preprocessing for each of the log(`) comparison can be done in parallel in constant rounds while
online each recursive step only uses a constant amount of rounds and multiplications but must be done
sequentially.

Catrina and de Hoogh [48], give an alternative set of protocols for the greater than operation using
a rather different approach. In contrast to Lipmaa and Toft, these protocol come in variants with both
constant and logarithmic rounds. Namely, they start from the fact that a = y−x < 0 implies that x > y.
They then use the observation that if x and y are bounded so that a = y− x ∈ {−2k−1, . . . ,2k−1−1},
where k < ` then we have for d = ba/2k−1c, that either d = 0 mod 2k implying a ≥ 0 or d = −1
mod 2k implying a < 0. To help the intuition, this essentially means that if we think of a mod 2k as a
k bit number then we have that a < 0 if and only if the most significant bit of a is set to 1. Catrina and
de Hoogh use the same masking technique as described for Lipmaa and Toft, to compute and reveal
m = a+ r and then show that extracting the k’th bit of a essentially reduces to a bit wise comparison
between r1, . . . ,rk and the m mod 2k. To do this they present three different techniques using 4,6
and O(log(k)) rounds respectively and all using O(k) multiplications (for small constants). Keller et
al. [147] report on an experimental implementation of these protocols based on the SPDZ protocol.
Surprisingly, they note that on 32 and 64 bit integers the logarithmic round protocol (using 5 and 6
rounds respectively) performs about 20% better than the version using just 4.

2.4 Secure Sorting

Secure sorting allows a set of parties P= {p1, ..., pm} to sort a list L obliviously, i.e., without revealing
its elements. L may be the result of preceeding secure computation or the concatenation of the parties’
inputs, i.e., L = l1 | ... | lm where party pi ∈ P holds list li. Secure sorting is most commonly used as
a building block in a larger secure computation (after all, revealing the result of a secure sort directly
leaks almost all information about the input); existing work [140, 124, 123, 120, 254] therefore focuses
on instantiating secure sorting protocols via general MPC such that further secure computation can
be performed on the resulting sorted list. Applications of secure sorting range from common data
analytics tasks such as aggregation [140], top-k queries [140], and private set-intersection [128], to
the instantiation of other cryptographic primitives such as oblivious RAM [70]. Most work on secure
sorting, with the exception of [140], assumes that the lengths of the input lists are public and may be
leaked.

An immediate obstacle to secure sorting is that many standard, efficient sorting algorithms are
not data-oblivious, i.e., have input-dependent control-flow which may leak the participating parties’
private inputs. Prior to elaborating on secure sorting, we briefly review existing constructions for
sorting in-the-clear, that is without privacy constraints.
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Sorting In-The-Clear

Most sorting algorithms fall within the family of comparison sorts. Comparison sorts order elements
using only pair-wise comparison between elements. For practically efficient comparison sorts such
as quicksort and merge sort, the input determines the order in which the comparisons are performed.
Sorting networks [26, 205], on the other hand, are comparison sorts with input-independent control
flow. Sorting networks were first developed in the sixties as a means to parallelize sorting and im-
plement sorting in-hardware [26, 205]. A sorting network consists of a circuit of compare-exchange
gates. A compare-exchange gate takes as input two elements and swaps these based on the result
of their comparison. The output is routed on to further compare-exchange gates. The topology of a
sorting network and therefore the order in which comparisons are performed is determined solely by
the size of the input (and the particular type of sorting network used). The AKS network [10] requires
O(n logn) comparisons where n is the number of elements to be sorted; this is asymptotically opti-
mal for comparison-based sorting. For practical input sizes, however, other sorting sorting networks
with worse asymptotic performance of O(n2 logn) such as the bitonic sort or odd-even merge sort
[26] achieve significantly better performance due to the large constant overhead of the AKS sorting
network [155].

Comparison-based sorts are not the only class of sorting algorithms. Distribution sorts such as
counting sort or radix sort do not use the comparison operator to order elements. Consequently, the
lower bound of O(n logn) does not apply to such algorithms. Counting sort, for instance, runs in time
O(n+ k) where k is the value of the largest input element. This potential gain in performance comes
at the cost of loss of generality: distribution sorts place restrictions on the domain of the input, e.g.,
counting sort only works over the integers. Furthermore, the complexity of distribution sorts depends
on the range of the input which is not the case for comparison-based sorts.

Secure Sorting

The above constructions have since been adopted to the domain of secure sorting. Sorting networks
offer a natural basis for secure sorting algorithms as they are inherently data-oblivious; the use of
sorting networks to implement secure sorting is explored in [120, 243, 140, 128]. Perhaps surprisingly,
it is also possible to convert data-dependent sorting algorithms such as quicksort into efficient secure
sorting protocols; Hamada et al develop this approach in [124]. Non-comparative sorting algorithms
have also been studied in the context of secure sorting; Hamada et al implement a secure version of
radix sort in [123]. Zhang does so for counting sort in [254].

As previously noted, secure sorting is treated as a building block for secure computation; all
work we discuss here develops secure sorting protocols that can be instantiated via a general MPC
scheme and as such inherits the specific schemes’ security guarantees. We note that the work in
[140, 124, 254, 123] develops protocols tailored to arithmetic secret-sharing based schemes, whereas
[243, 128] targets garbled circuits [251]. Next we discuss existing work in more detail.

In [120] Goodrich develops the randomized Shellsort algorithm, a randomized version of Shellsort
[232] (just as the name suggests). Randomized Shellsort is data-oblivious and sorts n-length inputs
using O(n logn) comparisons, with very high probability (the probability of failure is 1/nb where b is a
constant and b≥ 1). Goodrich proposes that randomized Shellsort can be used to efficiently implement
secure sorting; the algorithm can be expressed as a circuit of compare-exchange gates, which in turn
can be implemented using only secure arithmetic and secure comparison, for which a number of
efficient protocols exist [115, 48, 173]. Furthermore, Goodrich provides a conversion of the original
algorithm to a Las Vegas version which always succeeds, and uses O(n logn) comparisons with very
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high probability. Goodrich is the first to consider the use of data-oblivious sorting algorithms in the
context of secure computation. In subsequent work [243], the algorithm is instantiated via garbled
circuits and evaluated empirically.

Wang et al [243] develop protocols for secure sorting in the two-party setting. They consider the
use of sorting networks and construct secure sorting protocols from bitonic sort and odd-even merge
sort [26]. The authors also construct a protocol based on randomized Shellsort [120] discussed previ-
ously. Since sorting networks as well as randomized Shellsort are data-oblivious algorithms, the aut-
hors are able to restrict the use of secure computation to evaluating a sequence of compare-exchange
gates. To evaluate the compare-exchange gates, the authors use an implementation of garbled circuits;
the input and output of each gate is in XOR secret-shared form such that neither of the parties le-
arn the intermediate results. Both the bitonic sort and odd-even merge sort require O(n log 2n) such
evaluations while randomized Shellsort runs in O(n logn). The authors further implement the sor-
ting protocols in the Fairplay framework [176] and evaluate their performance. They observe that
odd-even merge sort always outperforms bitonic sort while randomized Shellsort outperforms both
sorting network based approaches on larger inputs (for n = 106 odd-even merge sort requires∼9∗107

compare-exchange gates whereas randomized Shellsort requires only ∼4∗107).
Jónsson et al implement secure sorting in [140] using odd-even mergesort [26]. Just as [243], this

work restricts the use of secure computation to evaluating compare-exchange gates in their sorting
protocol; in contrast to [243], the authors work in the multi-party setting and use an arithmetic secret-
sharing based MPC scheme for instantiating their protocols. The sorting algorithm uses O(n log2 n)
secure comparisons and requires O(log2 n) rounds of communication. The authors further propose
several use-cases for secure sorting as a building block for more complex secure algorithms, e.g.,
secure aggregation and weighted set-intersection. They combine the resulting protocols to realize a
distributed, data-oblivious intrusion-detection system (IDS). Some of the higher level protocols, for
instance secure aggregation, require keyed sorting. Instead of sorting singleton elements, a keyed sort
sorts a list of key-value pairs of the form (k0,v0), ..., (kn,vn) by the key entries ki.

In contrast to other work, the authors also consider secure sorting with the additional requirement
that input lengths must remain private. To this end, the parties first securely compute the total length
l of the result of the sort, i.e., the sum of the lengths of all inputs, and pad their inputs with dummy
elements up to length l before running the original secure sorting protocol2. This hides the lengths of
the parties’ individual inputs but incurs a running time overhead linear in the number of contributing
parties. The authors implement their protocols in Sharemind [37] and demonstrate a throughput of
214 elements in three and a half minutes.

Hamada et al. propose a general technique to converting data-dependent comparison sorts into
secure sorting algorithms in [124]. Common comparison sorts operate by comparing elements and
branching based on the result; this clearly incurs input leakage. The authors observe that this leakage
can be avoided by obliviously shuffling (see Section 2.5) the input before sorting; since the randomly
permuted elements cannot be mapped back to the original list, securely comparing two elements and
revealing the result leaks no information about the original input elements (assuming that all elements
are distinct). Subsequently, one can branch on the results of the comparisons and implement efficient
data-dependent comparison sorts. The authors extend the approach to handle duplicate elements by
modifying the input with tie-breakers to force uniqueness. The resulting protocol works in the multi-
party setting and can be instantiated via any general MPC scheme that supports reactive computation,

2Setting dummy elements to be the minimum (or maximum) of the values to be sorted allows for them to be removed
from the resulting list L′ by simply discarding the first (or last) |L′| − l elements of L′. Should the extremes of the input
values not be known, each input element can be annotated with a flag indicating if it is a dummy element or not and filtered
out at the end by performing a keyed-sort on the flags.
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i.e., a scheme that allows for intermediate values to be revealed and computed on in the clear. The
authors provide a C++ implementation of the protocol based on a passively-secure three-party scheme
based on Shamir secret-sharing and evaluate the efficiency of their approach on quicksort, showing
that their approach outperforms sorting network based alternatives. They demonstrate a throughput
of 106 elements in ∼1226 seconds (whereas other work such as the previously discussed approach by
Jónsson et al takes >3600 seconds) The authors use the secure shuffling algorithm from [166] which
requires only O(n logn) communications (as opposed to secure comparisons) over a constant number
of rounds; the sorting step therefore presents the main bottle-neck of the overall algorithm. Quicksort
(on average) requires O(n logn) comparisons and O(logn) communication rounds.

We note that while the above approach by Hamada et al. yields the best performance for the case
when the list to be sorted is already secret-shared among the parties, an even faster approach exists
when the list is a direct concatenation of the parties’ inputs. In this case, the parties may pre-sort their
input lists locally and use the secure merging approach described by Huang et al. in [128] which has
O(n logn) worst case performance with low constants and as such may outperform quicksort.

2.5 Secure Shuffling

Secure Shuffling, also known as Oblivious Shuffling, refers to the process of randomly shuffling a
list of elements using secure computation. I.e., given a vector of elements x = (x1, . . . ,xn) securely
computing the vector xπ = (xπ(1), . . . ,xπ(n)) for a uniformly random permutation π unknown to the
adversary. This functionality is a useful subroutine in a number of situations where the order of
elements may otherwise leak information in a larger protocol. For example, secure shuffling has been
used in protocols for private set intersection [128], secure database operations [165], oblivious RAM
[147] and even secure sorting as described in Section 2.4.

In this section we will describe three state of the art techniques for secure shuffling offering a
trade off between depth (round complexity) and the amount of non-linear gates (communication com-
plexity) in the circuit to be evaluated. Both techniques (as well as most known techniques for secure
shuffling) are based on the observation that composing several permutations results in a new permu-
tation. Further, to apply a random permutation unknown to the adversary, we can let each party in
the protocol supply a random permutation and securely evaluate each permutation consecutively. As
long as a single honest party exists the resulting permutation will be uniformly random in the view
of the adversary. Thus, secure shuffling reduces to securely computing a permutation on x, and the
techniques described below mainly differ in how they represent and evaluate permutations.

The first technique we will describe is due to Laur et al. [166] and is based on permutation ma-
trices. It achieves low circuit depth at the cost of high number of non-linear gates. Specifically, the
circuit requires O(m) depth and O(mn2) non-linear gates, where m is the number of parties participa-
ting in the protocol. A variation of the technique reduces the depth of the circuit to O(log(m)) at the
cost of increasing the number of non-linear gates to O(mn3).

The second technique, described by Huang et al. [128], is based on a so-called permutation
network. This technique reduces the non-linear gate complexity compared to that of Laur et al. at the
cost of increasing the depth by a O(log(n)) factor. This results in a shuffle with O(m log(n)) depth
and O(mn log(n)) non-linear gates. In [147], Keller and Scholl extend the passively-secure protocol
above to the malicious case.

The third technique is also due to Laur et al. [166] and is based on resharing. This technique is
particularly efficient in the honest majority setting with semi-honest corruption. As opposed to the
other two techniques, it only requires secret-sharing operations (and no multiplications). It has O(2m)
depth and requires O(2mn log(n)) calls to the secret-sharing functionality.
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We note that, while the protocols below are described in an arithmetic setting, the computation
mainly involves values in the set {0,1}, and thus they easily carry over to the Boolean setting with
the same complexities. Additionally, depending on the underlying scheme used for general secure
computation, both protocols are secure against either semi-honest and malicious adversaries. Only,
in the malicious case the input of each party must be proven to be consistent with the protocol. E.g.,
in the arithmetic setting the inputted values must be proven to be in the {0,1} set. These proofs are,
however, easily done using general secure computation and does not change the overall asymptotic
complexities of the protocols. We refer to [166] and [147] for details.

2.5.1 Permutation Matrix based Shuffling

Any permutation, π , on a vector x of dimension n can be represented by a permutation matrix Mπ ∈
{0,1}n×n with exactly one 1 entry in each row and each column. I.e., for each permutation π there is
a permutation matrix Mπ so that Mπx = π(x).

The shuffling techniques of Laur et al., proceeds by letting each party, Pi, input a random permu-
tation matrix Mπi and then computing Πm

i=1Mπix = Mπx = π(x), where π is the permutation resulting
from composing the permutations π1, . . . ,πm. If we let x0 = x and xi = Mπixi−1 we can compute the
permuted vector π(x) = xm by computing each of the xi iteratively. This requires m times multiplying
a n×n matrix with a n dimensional vector which can be done in O(1) depth using n2 multiplications,
leading to a circuit of depth O(m) with O(mn2) multiplications. Alternatively, we could first compute
the matrix Mπ = Πm

i=1Mπi and then compute Mπx = π(x). If we compute Mπ in a tournament tree
fashion we can thus reduce circuit depth to log(m). This, however, requires m matrix multiplicati-
ons which uses O(n3) multiplications. Thus the overall protocol requires log(m) depth and O(mn3)
multiplications.

2.5.2 Permutation Network based Shuffling

Permutation networks are circuits similar to sorting networks as described in Section 2.4, only per-
mutation networks replace the compare-exchange gate with the more general conditional-exchange
gate. A conditional-exchange gate takes two elements x and y swaps them based the value of a control
bit b. Note, that such a gate is easily implemented using general secure computation by computing
x′ = b(y− x)+ x and y′ = b(x− y)+ y. For each permutation π a set of control bits can be computed
so that the permutation network computes π .

The secure shuffling protocol of Huang et al. proceeds by having each party Pi pick a random
permutation πi, compute the corresponding control bits for a permutation network and input these
bits to a secure computation (we stress that simply picking the control bits at random does not ne-
cessarily give a uniformly random permutation). The permutation is then computed by evaluating the
resulting m permutation networks consecutively. Concretely, Huang et al. uses the permutation net-
work of Waksman [242] which has depth O(log(n)) and uses O(n log(n)) conditional-exchange gates.
Thus, the overall shuffling circuit to be securely evaluated has O(mlog(n)) depth and O(mn log(n))
conditional-exchange gates.

2.5.3 Resharing based Shuffling

The authors aptly describe this approach as a hide and seek game among the parties in P: for each
possible adversarial coalition A and its complement C = P \A, the parties in C jointly agree on a
permutation and apply it to the input vector x such that all parties in A remain oblivious to the permu-
tation. For each such group A and its complement C, the protocol proceeds as follows: the parties in
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A secret-share their shares among the parties in C such that the original input vector x is now secret-
shared only among the parties in C; the parties in C jointly choose a permutation and apply it to the
resulting secret-shared vector; the parties in C then secret-share the permuted vector3 across P. Note
that the protocol requires that the parties in C cannot reconstruct the original input vector, i.e., |C| is
below the corruption threshold. The authors also develop a covert and actively-secure variant of the
above protocol.

Unlike the other two approaches, which can be implemented using any general MPC scheme that
supports multiplication and addition, this technique requires a secret-sharing based backend. Furt-
hermore, its performance degrades exponentially in the number of participating parties. However,
when the number of parties is small and especially in the passive security, honest majority setting
(for which the authors provide additional optimizations) this approach significantely outperforms the
other two techniques: if the number of parties is treated as constant, the protocol is asymptotically
optimal, requiring constant communication rounds and only O(n log(n)) calls to the secret-sharing
functionality.

2.6 Private Set Intersection

The Private Set Intersection (PSI) problem, in its basic form, requires that two parties, each holding a
private set of elements, learn the intersection of their sets without either party learning any additional
information about the other party’s input. Many other variations of the problem exist, such as multi-
party PSI, or PSI-cardinality (determining the size of the intersection). PSI has a wide range of
realistic applications, from collaborative botnet detection [197] to determining ad-conversion rates
[134]. Due to its practical relevance, PSI is a well-studied problem–there is a large body of prior work
[111, 128, 215, 86, 71, 72] that ranges back over a decade–and remains an active area of research
[223, 209, 216, 158, 142]. Since its initial formalization in 2004 [111], several approaches to PSI
have been developed. We first summarize the evolution of PSI protocols and further discuss the most
recent advances in each category. Though we focus foremost on two-party PSI, we also address other
settings in Section 2.6.3.

2.6.1 Definitions

Most work we cover here targets the two-party PSI problem. We refer to the two parties as S (alter-
natively the server) and C (client). The inputs of the parties are sets IS and IC, respectively. Unless
otherwise stated we assume that only C receives the result of the intersection.

PSI protocols can be categorized as special-purpose and general-purpose. Special-purpose proto-
cols consider PSI in isolation, i.e., as the only computation the parties wish to perform, with the result
revealed in-the-clear. General-purpose PSI on the other hand embeds PSI in the broader context of
secure computation and provides circuit-based solutions such that the result of the intersection may
be further computed on securely, be it via garbled-circuits or another secure computation scheme.
While state-of-the-art special-purpose protocols are more efficient than general-purpose protocols
[216], general-purpose protocols offer the obvious advantage of generality.

Finally, PSI protocols come with different security guarantees; we discuss both passively-secure
and actively-secure protocols (we will also refer to these settings as semi-honest and malicious re-
spectively).

3This is a slight over-simplification: the parties in C secret-share their shares of the vector. Consequently, each party
p ∈ P receives multiple shares for each element in the permuted vector; p then recombines these shares into a single share.
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2.6.2 Building Blocks

Over a decade of research has naturally produced protocols that make use of a wide array of building
blocks (cryptographic and otherwise). We summarize these here.

Hashing

State-of-the-art PSI protocols rely heavily on hashing for performance improvements. Here we review
at a high-level the hashing techniques used, namely simple hashing, Cuckoo hashing, and Bloom
filters.

Simple hashing maps elements into a hash table via a random hash function. The hash table
consists of bins which can hold multiple elements. More formally, given a hash function h : D 7→ D′,
an element e ∈ D, and a hash-table T with a bin for each possible element in D′, we map e into T by
computing a = h(e) and adding the result to the bin T [a]. An element e can be retrieved from T by
computing a = h(e) and searching bin T [a] for e.

Cuckoo hashing, unlike simple hashing, maps elements into a hash table T for which each bin
can hold at most one element. To resolve collisions (an element mapping to an occupied bin), Cuckoo
hashing uses k hash functions H = {h1, ..., hk}: given an element e, if T [h1(e)], ..., T [hk(e)] all contain
elements already, one of the elements e′ is chosen at random and replaced by e; the hash functions in
H are used to remap e′. This can of course lead to further evictions; the process is only repeated a
limited number of times. If after reaching the threshold an element remains unmapped, it is stored in
a stash.

Bloom Filters are data structures which allow for space-efficient membership testing; Bloom
filters are probabilistic and as such may give false positives (state that an element is in the Bloom filter
when it is not); false negatives however are guaranteed never to occur. A Bloom filter consists of an
m-bit array T (where m is the capacity, proportional to the number of elements it is expected to hold)
and k hash functions H = {h1, ...,hk} each of which maps arbitrary length inputs to range {1, ...,m}.
To insert an element e, compute I = {h1(e), ...,hk(e)} and set T [i] = 1 for each i∈ I; likewise, to check
membership of e′, compute I = {h1(e′), ...,hk(e′)} and check that all corresponding bits in T are set
to 1.

Oblivious Transfer

Oblivious transfer (OT) [220] allows a sender S with two messages m0,m1 to transfer message mb
to receiver R where R chooses bit b; S does not learn b and R does not learn m1−b. We refer to this
as 1-out-of-2 OT. A common, more general variant is 1-out-of-N OT [99]; here S holds N messages,
instead of two. Another variation is random oblivious transfer (ROT) in which S does not provide
inputs but rather learns two random messages r0,r1 as a result of the transfer (R learns rb as before).
OT extension [27] greatly reduces the cost of OT by bootstrapping any number of OTs via a small
number of base OTs; the base OTs require costly public-key cryptography operations whereas far more
efficient symmetric primitives can be used for the remaining OTs. Subsequent work has improved the
performance of OT by orders of magnitude and is instrumental to state-of-the-art PSI protocols such
as [216, 158, 223, 209].

Oblivious Pseudo-Random Function Evaluation

Oblivious pseudo-random function evaluation (OPRF evaluation) allows two parties, A and B with
respective inputs kA and xB to evaluate a pseudo-random function fk(·), keyed by kA on input xB, such
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that A learns nothing and B learns the result of fkA(xB) and nothing else. The OPRF construction was
first formalized in [110].

Current state-of-the-art approaches [216, 158] instantiate PSI via OPRF evaluation. Conceptually,
this can be done as follows (in practice a number of optimizations are applied, as we will discuss
later): given server S with input set IS = {s1, ...,snS} of length nS, and client C with input set IC =
{c1, ...,cnC} of length nC, S chooses key kS; jointly, C and S evaluate OPRF fkS(·) on each element in
IC such that C learns I′C = { fkS(c1), ..., fkS(cnC)}; S evaluates fkS(·) on its own input IS, obtaining I′S =
{ fkS(s1), ..., fkS(snS)}, permutes the result to I′′S , and sends I′′S to C; C obtains the result by evaluating
the intersection I′C ∩ I′′S . This approach was first suggested in [110].

2.6.3 The History of PSI

For context, we summarize the milestones in two-party PSI research. The first constructions for PSI-
like protocols date back to the 80s [231, 182]; the first rigorous treatment of PSI is due to Freedman
et al. in 2004 [111]. The authors develop a special-purpose protocol based on oblivious polynomial
evaluation (OPE), instantiated via additively-homomorphic encryption (such as realized by the Pail-
lier cryptosystem [212]). The authors use hashing to improve runtime complexity. They put forward
passive- and active-security protocols. Further, Freedman et al. formalize oblivious pseudo-random
function evaluation (OPRF evaluation) and mention its application to PSI in [110]. De Cristofaro
and Tsudik develop a special-purpose, actively-secure PSI protocol based on blind-RSA [71]; nota-
bly, they are the first to achieve communication and computation complexity linear in the number of
input elements. In [128] Huang et al. challenge the belief that general-purpose PSI-protocols are
inherently slower than special-purpose protocols. They develop an optimized boolean circuit for PSI
(that has O(n logn) non-XOR gates) and demonstrate that a garbled-circuit-based evaluation outper-
forms special-purpose protocols such as [111, 71] when the underlying public-key cryptosystems use
large security parameters. Dong et al. follow with special-purpose protocols based on oblivious trans-
fer and Bloom filters in [86]; they provide both passively- and actively-secure protocols with linear
complexity; the protocols are practically efficient as they mostly consist of symmetric-key operations.

Despite these advances, anno 2014 PSI protocols still do not meet the performance requirements
of real world applications [179]; to this end, Kamara et al. make a departure from traditional security
models for PSI and propose server-aided PSI in [142]. In this setting they are able to match the
performance of insecure, plain-text intersection.

Pinkas et al. push the boundaries of traditional PSI in the semi-honest setting in a line of work
[215, 214], culminating in special-purpose protocol [216] based on OPRF evaluation (instantiated via
OT) and an array of hashing techniques; the complexity of their protocol depends on the length of the
representation of the inputs; Kolesnikov et al. develop a special-purpose, OPRF-based protocol that
scales independently of input representation length [158]. The performance of both protocols falls
within an order of magnitude of insecure set intersection.

In the malicious setting, Rindal and Rosulek [223] fix a security bug in the aforementioned
actively-secure protocol by Dong et al. [86] and improve its performance; as the original proto-
col, their protocol is based on OT and Bloom filters. Orru et al. extend the 1-out-of-N OT protocol
by Kolesnikov and Kumaresan [157] to the malicious setting and apply the resulting protocol to PSI
in [209]; the protocol has a very similar structure to the semi-honest ORPF-based PSI protocol by
Kolesnikov et al. [158] mentioned above; Orru et al. achieve malicious security via a consistency
check akin to the one developed for actively-secure 1-out-of-2 OT in [146].

Though state-of-the-art special-purpose protocols outperform general-purpose protocols, the lat-
ter approach remains competitive because of its generality. The most efficient protocol in this space

September 29, 2017 D2.1 State of the Art 25



H2020-LEIT-ICT 731583 SODA Deliverable D2.1

is due to Pinkas et al. [216]; it uses a pair-wise comparison circuit, optimized via hashing.
Pinkas et al. put forward a comprehensive empirical evaluation of a wide range of approaches

to two-party PSI in [216]; the authors implement approaches from [128, 142, 72, 86, 182] and ben-
chmark these within a single environment, furthermore applying state-of-the-art optimizations to the
underlying cryptographic primitives. As such, this work forms an excellent overview of the landscape
of PSI research today.

While most research focuses on two-party PSI, other settings also exist. Kissner and Song first
tackle multi-party PSI and private multi-set operations in [153]; they build upon the OPE-based ap-
proach put forward by Freedman et al. in [111]. Kissner and Song develop special-purpose protocols
for intersection, union, and element reduction; the protocols can be composed arbitrarily to express
more complex operations.

In the setting of multi-party PSI, the most recent advances are due to Hazay and Venkitasubra-
maniam [127]. Hazay and Venkitasubramaniam revisit the work by Freedman et al. [111] in the
multi-party setting; as such they develop OPE-based protocols in the semi-honest and malicious set-
ting. The authors assume a star topology, in which parties are connected via a central party (as
opposed to the common complete topology). At a high level, the authors use the 2-party protocol by
Freedman et al. [111] between each party and the central party to incrementally compute the result. In
the semi-honest setting this achieves communication complexity linear in the size of the input sets and
linear computation complexity for all parties but the central party (which has quadratic computation
complexity).

Blanton and Aguiar develop general-purpose protocols for a wide range of set and multi-set
operations in [33]. The authors optimize their protocols for an additive-secret-sharing based MPC
scheme (reducing communication rounds) and achieve communication and computation complexity
of O(n logn) where n is the size of the input. Since all protocols are general-purpose they may be arbi-
trarily composed with other functionality; this work presents the most comprehensive suite of private
set operations to-date.

2.6.4 PSI Today

Further, we discuss state-of-the-art special-purpose protocols for two-party PSI in the semi-honest
setting [216, 158] and the malicious setting [223]. We also describe work that considers an alternative
threat model, namely sever-aided PSI [142].

Semi-Honest Setting

The most efficient special-purpose two-party PSI protocols for the semi-honest setting are due to
Pinkas et al. [216] and Kolesnikov et al. [158]. We will further refer to these protocols as PSZ-PSI
and KKRT-PSI respectively.

PSZ-PSI [216] by Pinkas et al. builds upon techniques the authors previously put forth in [215,
214]. The protocol is based on OPRF evaluation. To instantiate OPRF evaluation the authors use an
improved version of the OT-extension protocol developed in [157] as well as the random OT protocols
of [200, 18]. At a high-level, the protocol operates by both parties S and C first hashing the elements
in their input sets to hash tables using the same pre-agreed on hash functions, and then applying
an OPRF-based protocol conceptually akin to the one outlined in (2.6.2) to each bin in their hash
tables to compute and output masks of their elements to C. C obtains the final result by computing
the intersection over the masked sets. The complexity of the previous state-of-the-art PSI protocol
[214] depends on the bit-length l of the input representation; to this end, [214] suggests the use of
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permutation-based hashing [16] which reduces the length of the elements on which the OT protocol
operates by lognC bits, where nC is linear in the number of elements in the input set of C. The
protocol presented here also makes use of permutation-based hashing and achieves complexity that is
independent of the bit-length for input sets of up to a billion elements by improving the underlying
OT-extension protocol.

Further we describe the protocol in more detail: both parties S and C first hash the elements in
their sets, IS and IC respectively; S uses simple hashing to map inputs IS into two-dimensional hash-
table TS, and pads all bins up to a pre-computed maximum bin size with dummy elements; C uses
Cuckoo hashing4 to map inputs IC into one-dimensional hash-table TC (and stash) and fills all empty
bins with dummy elements; the protocol is designed such that |TS| = |TC| and that for any eC ∈ IC
and eS ∈ IS if eC = eS then the bin eC maps to in TC has the same index as the bin eS maps to in TS

(for details on how this is achieved we refer the reader to the original paper); S generates key kb for
each bin b ∈ TS; for each bin b ∈ TC which holds a single element e (since C used Cuckoo hashing),
S and C jointly evaluate OPRF fkb(e) (C receives the results); C thus obtains T ′C which corresponds to
the original hash table TC but with all entries masked; for each bin b ∈ TS, S evaluates fkb(e) for each
e ∈ b, obtaining T ′S with masked entries, collects all the entries into one set V , permutes it to V ′ and
sends the result to C; C obtains the final intersection result by checking for each masked entry m ∈ T ′C
if m ∈V ′ and outputting the corresponding unmasked entry in TC; a similar procedure is repeated for
elements in the stash of C.

The protocol has computation overhead linear in n (the size of the input sets) and requires
O(n logn) bits to be sent; an implementation of the protocol realizes the highest throughput demon-
strated in the semi-honest setting: the intersection of two sets of one billion (∼230) elements each runs
in approximately 34 hours.

Just as PSZ-PSI, KKRT-PSI [158] by Kolesnikov et al. builds upon the protocol in [214]. While
the protocol in [214] uses OT extensions to implicitly instantiate OPRF evaluation, Kolesnikov et
al. make the OPRF evaluation explicit. We have already seen the overall structure of the KKRT-PSI
protocol in PSZ-PSI (in fact PSZ-PSI adopts it from KKRT-PSI with minor modification): the parties
S and C hash their inputs to hash-tables, use OPRF evaluation to mask the elements in the tables, and
compute the intersection over the masked results. However, unlike [214] and PSZ-PSI, Kolesnikov
et al. achieve complexity that is entirely independent of the length of the representation of the input.
They do so by using a novel protocol for the OPRF evaluation step which they construct by modifying
the OT extension protocol of [157]. The key insight is that the error correcting code used to implement
[157] can be replaced by a pseudo-random code which does not depend on length of the elements the
OPRF is evaluated on.

KKRT-PSI has linear communication and computation complexity in the number of elements in
the input sets and is thus asymptotically superior to PSZ-PSI. An intersection of two sets, each holding
224 elements (with representation size of 128 bits), takes approximately one minute.

Malicious Setting

In the malicious setting, the current state-of-the-art protocol for 2-party PSI is due to Rindal et al.
[223] which we will further refer to as RR-PSI.

RR-PSI builds upon the protocol by Dong et al. in [86]; it corrects a security flaw in the actively
secure protocol and significantly improves its performance. Just as [86], RR-PSI realizes PSI via
oblivious transfer and Bloom filters. Further we discuss the details of RR-PSI. To aid our narrative

4Using this combination of simple hashing and Cuckoo hashing is shown to be more efficient than other hashing appro-
aches in [214].
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we first outline the passively-secure protocol by Dong et al. [86]; we then describe the challenge of
extending the protocol to active security and how RR-PSI overcomes this challenge.

The protocol by Dong et al. uses a construction the authors refer to as garbled Bloom filter (GBF).
Like a regular Bloom filter, a GBF uses k hash functions and table T with m slots; however instead
of storing single bits in T , a GBF stores m-bit strings; a GBF is initialized to uniformly random
strings; to insert element e, the element is XOR-secret-shared to S = {s1, ...,sk} and each share stored
in T under positions h1(e), ...,hk(e) respectively. To check membership of element e′, we check if
e′ = T [h1(e′)]⊕ ...⊕T [hk(e′)].

The passively-secure version of the protocol proceeds as follows. Given our parties S and C, with
respective inputs IS, IC, S and C agree on k hash functions to use for the underlying Bloom filters and
Bloom filter capacity m; S stores its elements IS in garbled Bloom filter FS; C stores its elements IC
in regular Bloom filter FC; for each position s ∈ {1, ...,m}, S and C perform an OT, where C inputs
FC[s] as its choice bit and S supplies messages (r,FS(s)) where r is a random string of length m (in the
actual protocol this is realized via a single 1-out-of-m OT); C therefore learns F ′S where F ′S[s] = FS[s]
if FC = 1 and a random string otherwise; C can use FC and F ′S to locally compute IS∩ IC.

This protocol is of course not secure against a malicious C: C can simply set all of its choice bits
to 1 and thus recover IS. For the malicious setting, Dong et al. develop a protocol which forces C
to input a threshold of 0 choice-bits (otherwise C is unable to recover any of the true values of FS).
Unfortunately, their protocol suffers from a selective failure vulnerability (identified independently in
[162, 223]) where a malicious S can recover some of IC by abusing the very mechanism put in place
to protect against a malicious C.

RR-PSI fixes this vulnerability with a cut-and-choose approach that protects against C setting
too many choice-bits to 1. The authors also include several performance optimizations; we omit
these for clarity. Unlike the original protocol, S and C will perform N 1-out-of-2 OTs where N =
m + R, m is the capacity of the underlying Bloom filters, and R can be thought of as a security
parameter for the subsequent cut-and-choose step; first, S prepares a list of N message pairs M =
{(m1,0,m1,1), ...,(mN,0,mN,1)} (all messages are of length m and chosen uniformly at random); C pre-
pares list of N bits B = {b1, ...,bN} such that the proportion of 1 bits is within an accepted threshold;
for each i ∈ {1, ...,N} S and C perform an OT where S enters messages (mi,0,mi,1) and C enters as
choice bit bi; in the cut-and-choose step, S chooses random subset T ⊂ {1, ...,N} of the OTs perfor-
med (such that |T | = R) and challenges C to prove that its choice bits set to 1 were in fact within
the acceptable threshold for the selected OTs; C can do so by sending back m j,b j for each j ∈ T ; if
S discovers too many choice-bits set to 1, S aborts, otherwise the protocol continues; C finds a per-
mutation π that maps the remaining choice bits B′ for the unopened OTs to a regular Bloom filter FC

(which encodes IC) and sends the permutation to S5; S obtains M′ by removing from M all message
pairs corresponding to the opened OTs, applies π to M′, maps each pair (m j,0,m j,1) in M′ to m j,1, uses
the result to construct garbled Bloom filter FS; S sends FS to C; C computes the resulting intersection
using FS and the messages it received in the OT step for choice bits set to 1.

RR-PSI operates in two stages: an offline and online phase. The offline phase is entirely data-
independent and pre-computes material to be used in the data-dependent online phase. Communi-
cation (bits sent) for the offline phase scales linearly in the input set size n, but quadratically in the
security parameter. Communication for the online phase scales with O(n logn). Finally, the aut-
hors benchmark an implementation: an intersection of two sets, one million (∼220) elements each
(with bit-length 128) requires approximately two minutes (of which the online phase takes only ∼14

5This requires that B′ contains a sufficient number of choice bits set to 1. We refer the reader to the paper on how this is
achieved.
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seconds).

Server-Aided PSI

Even more efficient protocols for PSI exist if one concedes a relaxation in security guarantees. The
work by Kamara et al [142]–further referred to as KMRS-PSI–is state-of-the-art within sever-aided
PSI which considers a weaker security model than the protocols described above: it assumes the
existence of a special party which aids the other parties in computing the intersection of their sets and
is trusted not to collude with any of them.

More formally, we define the scenario of server-aided PSI as follows: given a set of n parties
P = {p1, ..., pn}, each holding input sets I1, ..., In respectively, and a special party S (which we also
refer to as the server), the parties in P compute I1 ∩ ...∩ In with the aid of S; the parties in P learn
the result; S learns nothing6. The authors provide protocols secure against a semi-honest, covert,
and malicious server; the parties in P are assumed to be malicious in all protocols. The assumption
upon which the protocols rest is that S does not collude with any parties in P, i.e., that an adversary
can either corrupt several parties in P or the server, but not both. Apart from the protocols targeting
different adversarial models, the authors also develop a protocol which hides the size of the result
from the server, and a protocol which guarantees fairness, i.e., that either all parties in P learn the
result, or none do.

Further we outline the base protocol secure against a semi-honest server upon which the other
protocols are built. The parties in P agree on a key k to a pseudo-random permutation F ; each party
pi ∈ P with input set Ii = {e1, ...,em} computes I′i = {Fk(e1), ...,Fk(em)}, permutes the result to I′′i and
sends I′′i to S; upon receiving all permuted, masked input sets, the server computes the intersection
over these sets, permutes the result, and publishes it to all parties; the parties obtain I1 ∩ ...∩ In by
applying F−1

k to each element in the masked result they received from S.
This approach yields an immense improvement in performance over state-of-the-art protocols in

the traditional setting: in the semi-honest case, the intersection of two sets holding one billion elements
each completes in approximately 10 minutes (only 10% slower than the insecure plaintext version).

6Depending on the protocol, the input sizes and result size are leaked to the server. Furthermore, should the server
possess prior knowledge about one of the input sets, it may learn the existence of specific elements in the other input sets.
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3 Data Mining and Machine Learning

Data mining is an active research field studying how to manage and analyze (large) datasets to disco-
ver and make use of new knowledge in a form of descriptive (explorative), predictive and prescriptive
patterns and models of varying complexity. Data mining is often used as an umbrella term cove-
ring different aspects of data analytics including different modeling and processing steps facilitating
knowledge discovery.

There are different methodological aspects of using data mining as a scientific toolbox, including
aspects of data engineering, model selection and evaluation, among others. The discovered knowledge
should be valid, (i.e. discovered pattern should be statistically significant, predictive models should
generate accurate predictions on new data with some certainty), and useful (i.e. providing new insights
or allowing for better decision making). It is also common to consider other requirements on the data
mining process, e.g. providing transparency, and certain level of guarantees with respect to model
accuracy and fairness, i.e. treating humans without discrimination. In our overview we omit these
methodological perspectives and focus instead on providing a categorization of the common data
mining tasks (Section 3.1) and techniques that are used to address them (Section 3.2). We consider
data mining as a process in Section 3.3. Then we overview common application areas (Section 3.4)
and operational settings (Section 3.5) that impose different requirements on data mining techniques.

3.1 Data Mining Tasks

Data mining tasks are typically divided into two main categories: predictive modeling including clas-
sification, forecasting, regression, prediction, ranking, and descriptive modeling including clustering,
explorative data analysis, pattern mining and outlier analysis. Many description modeling tasks are
formulated as unsupervised learning, i.e. we try to discover some interesting global or local structures
from the unlabeled data.

Predictive modeling is often formulated as a supervised learning problem. It is worth mentioning
that predictive modeling is not necessarily about predicting future events like e.g. in future demand
forecasting. We can formulate predictive modeling tasks for nowcasting, e.g. identifying user intents
or making a diagnosis and even making predictions for events occurred in the past (e.g. classifying
some old texts by topic) or having no connection to temporal dimension. Another special case of
predictive analytics is prescriptive modeling that usually refers to what-if analysis and may involve
elements of predictive, descriptive and explanatory modeling. Uplift modeling, persuasion profiling,
and recommendations task would be typical examples. E.g. uplift modeling can help us to study what
would be a marginal effect of a movie ticket coupon or a 15% off coupon in getting more return
customers. From the persuasion profiling perspective we can set the goal to learn how to choose an
action/persuasion (type of coupon in this case) given an individual? Assuming that there is no globally
better action, i.e. some people may prefer movie tickets and others a discount coupon.

In the following we discuss classification, clustering, pattern mining and outlier analysis as the
most popular data mining tasks.

Classification. Consider the task of classifying e-mails to spam vs. relevant ones. Given examples
of both spam and relevant e-mails and knowing which are which, we want to be able to tell correctly
for each new email whether it is spam or not. More generally, classification is the process of learning
a model (from a given set of labeled examples) that would allow to classify new objects to one or more
predefined categories (as accurately as possible). More formally, it can be defined as follows. We aim
to predict a target variable y (binary or categorical) given a set of input features X ∈ℜp. An example
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is one pair of (X ,y). For instance, X is a set of terms contained in an e-mail and y = “spam” is the
true label indicating (ir)relevance of the example. In the training examples, that are used for model
building, both X and y are known. In the new examples, X is known, and y should be predicted.

Classification can be thought through the geometric interpretation (finding a decision boundary
separating examples of one class from the other) or the probabilistic interpretation. According to
the Bayesian Decision Theory [91], a classification can be described by the prior probabilities of the
classes p(y) and the class conditional probability density functions p(X |y) for all classes y = 1, . . . ,c,
where c is the number of classes. The classification decision is made according to the posterior
probabilities of the classes, which for class y can be represented as

p(y|X) =
p(y)p(X |y)

p(X)
.

The type of the target variable space depends on the task. In classification the target variable takes
categorical values (class labels), while in regression the target variable takes continuous values, i.e.
y ∈ R. In case of learning to rank, we can also think of classification like settings, but instead of
considering crisp category labels we can use probabilistic output of classifiers to rank instances by
how likely there are to be in the class of our interest.

Clustering. A clustering task is typically defined as follows: given a set of examples (data points),
partition them into groups containing subsets of examples that are similar to each other. The goal
of clustering is to get groups that are meaningful and/or useful. But clustering, being an explorative
data analysis in nature, is hard to formulate in such a way that we can expect meaningful and useful
grouping by design. Even the notion of the cluster is not well-defined in many applications.

Consider k-Means, that is perhaps the most well-known and the most popular approach that be-
longs to the group of partitional clustering techniques, aiming to divide data into subsets of k non-
overlapping clusters represented by their centroids or prototypes such that each example belongs to
one of the clusters, namely the one centroid of which is the closest to the corresponding example.
k-Means is defined as an optimization task in which, given examples X1,...,Xn and a k set by a user, we
search for best placement of centroids C1, . . . ,Ck such that the sum of squared (shortest) distances of
examples to centroids is minimized, i.e. ∑

n
i=1[min jDist(Xi,C j)]. The basic k-Means algorithm simply

iterates two steps till convergence: 1) form k clusters by assigning each point to the closest of the
current centroids, and 2) recompute centroids for each cluster based on current assignments. Even
if we were to find an optimal solution, we have no guarantee that we find useful or understandable
clusters. Evaluation of clustering as other unsupervised learning techniques and their results is rather
difficult unless we have a way to measure such expected utility.

Besides k-Means there are lots of other clustering formulations and corresponding approaches,
including hierarchical clustering, density-based clustering (e.g. DBSCAN [97]; cf. its variant for
evolving data [113]), spectral clustering [30], subspace clustering (e.g. CLIQUE [6], projected clus-
tering [3], probabilistic clustering (e.g. expectation-maximization [139]) among several others.

Pattern mining. Pattern mining is the process of finding interesting co-occurrences in the data. The
most common problem formulation is association pattern mining in transactional data. E.g. in the
context of market basket analysis we have sets of items bought by customers (transactions), and the
goal is to determine associations between groups of items bought by customers. Frequent pattern mi-
ning and association rule mining have been the most popular tasks. However, mining rare association
rules [156], class association rules [258], emerging patterns, subgroup discovery [204], exceptional
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model mining [92], data summarization [20], motif discovery [106] and many other problem formu-
lations have been considered and studied extensively over the past years.

Outlier analysis. Outlier analysis and anomaly detection deal with identifying examples (as indivi-
dual as groups of related ones) that are “not normal” or anomalous, i.e. distant from other examples
in some way. Typically, this is done in the context of some model of what normal behavior is.

Anomaly detection is often defined as a monitoring/detection task, e.g. monitoring for possible
equipment failures, credit card fraud, intrusion detection, money laundering, data leakage etc. Unlike
binary classification tasks, anomaly detection typically does not have enough anomalous examples for
traditional supervised learning and therefore specialized approaches have been developed. A compre-
hensive overview of anomaly detection problem formulations and techniques to address them can be
found in [53].

3.2 Data Mining Foundations and Techniques

There are many dimensions that can be considered for categorizing hundreds of popular data mi-
ning techniques. The theory-oriented data mining frameworks are based mainly on one of the four
following paradigms:

• one of the three statistical paradigms: statistical experiment paradigm, statistical learning from
empirical process paradigm, and structural data analysis paradigm,

• the data compression paradigm, i.e. considering data mining as data compression by means of
finding some structure or knowledge within it,

• the database paradigm based on the idea that all the power of discovery is in the query language,
and

• the machine learning paradigm where the idea is to let the data suggest a model.

Here we adopt the categorization of Domingos [83] that helps to link machine learning foundations to
different groups of the data mining techniques. Domingos call them the five tribes of learning systems.
They include symbolic learning, connectionism, evolution, probabilistic (Bayesian) inference, and le-
arning by analogy. We briefly review each of these tribes one by one giving examples of classification
techniques.

Symbolic Learning Symbolic learning is used an umbrella term for machine learning and AI appro-
aches that focus on high-level symbolic (human-readable) representations of problems, logic
and search.

The most common approaches to symbolic machine learning include induction (typically top-
down) of decision trees and induction of rules (including inductive logic programming). De-
cision trees are classification functions represented as trees. Nodes of a tree are attribute tests.
The branches of the tree are attribute values. The leaves correspond to class labels. Rules are
implications in either propositional or predicate logic. Lost of data mining techniques have been
developed to induce decision trees and rules from the training data. Popular approaches include
e.g. C4.5 [219] and RIPPER [61]).

Inductive Logic Programming (ILP) investigates the construction of logic programs from trai-
ning examples and background knowledge. ILP can be seen as a combination of logic, statistics,
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and computational control; the logical part is related to the formation of hypotheses, the statis-
tical part – to evaluating their degree of belief, and the computational control part – to guiding
the search over the space of hypotheses. While decision trees typically have rather limited ex-
pressive power, ILP allows for much more flexible representation, because it uses an expressive
first-order logic framework. The framework also allows the user to incorporate background
knowledge. Recent advances in ILP can be found in [194].

Connectionism Artificial neural networks (ANNs) are the main kind of connectionist systems inspi-
red by the biological neural networks of animal brains. Such systems can learn from examples
without task-specific programming and explicit feature engineering that makes them particu-
larly suitable for applications in which rule-based programming is not feasible, e.g. imaging,
speech recognition and text translation.

An ANN consists of a collection of connected artificial neurons (cf. axons in a biological brain)
organized in layers. Each connection (cf. synapse) between a pair of neurons can transmit a sig-
nal. Neurons and connections have weights that increase or decrease the strength of the signal.
Signals travel from the first input layer to the last output layer. Different layers may perform
different kinds of transformations on their inputs. Neurons may have different thresholds such
that only if the aggregate signal is above that level they propagate signal further. ANNs have
high expressive power as they can approximate arbitrary functions to any degree of accuracy by
learning these weights. However, training an effective ANN is difficult – two major issues are
overfitting and computation time. Neural networks have had ups and downs over the past deca-
des. The original idea of ANNs was to mimic real brains in the way they learn. However, some
ideas like backpropagation – passing information in the reverse direction – were found to be
effective and adopted in learning schemes. A recent success of ANNs in several applications,
notably in computer vision and speech recognition, is associated with Deep Neural Network
(DNN) that are ANNs with multiple hidden layers between the input and output layers. The
extra layers enable composition of features from lower layers,

Deep architectures include many variants of a few basic approaches, each finding success in
particular application domains. DNNs are typically feedforward ANNs in which signal pro-
pagates from the input layer to the output layer without looping. Recurrent neural networks
(RNNs), in which data can flow in any direction, and Long short-term memory (LSTM) are
found effective for language modeling. Convolutional deep neural networks (CNNs) are used
successfully in computer vision and speech recognition.

All DNNs must consider many training parameters, including the number of layers and number
of units per layer, the learning rate and initialization of weights. This creates challenges not
only from the computational perspective (i.e. cost in time and computational resources), but also
from the perspective of overfitting. Furthermore, DNNs are also prone to overfitting because of
the added layers of abstraction inviting to model various rare dependencies in the training data.
Therefore, it is common to use regularization methods such as unit pruning, weight decay and
sparsityand dropout that helps to exclude rare dependencies. Other different tricks like batching
are used to speed up computation. The foundations of modern DNNs are covered in the recent
book [119].

Evolutionism This tribe developes machine learning approaches that simulate the evolutionary pro-
cess. Genetic algorithms would be a popular category of such approaches. Genetic algorithms
are stochastic search algorithms which act on a population of possible solutions to find which
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one solves the problem best. Genetic algorithm are loosely based on the mechanics of po-
pulation genetics and selection. The candidate solutions are encoded as genes, i.e. strings of
characters from some alphabet. New solutions can be produced by evolving current population
of solutions by mutating and mating its members The better offspings have higher chances to
breed, mutate and survive. Many problems in machine learning can be naturally formulated as
genetic search, e.g. the problem of selecting best features.

Probabilistic Inference The main idea of machine leaning approaches based on probabilistic Bay-
esian inference is to reduce uncertainties by incorporating new evidence. The Bayes theorem
serves as the basic foundation block. Popular examples of such approaches include Bayesian
classification and topic modeling. One of the simplest yet effective approaches is Naive Bayes
classification [85]. For developing techniques capable of inferring more complex models it is
common to employ graphical models, an umbrella term for Bayesian and Markov networks of
different kinds.

Learning by Analogy Learning by analogy is one of the most intuitive methods of inference in hu-
man cognition. While encountering a new problem a person is reminded of past similar situ-
ations. That past relevant experience helps to choose behaviors that were appropriate in the
past adapting when needed to meet the peculiarities of the currently encountered problem.
Being able to identify relevant similarities between past and current problems serves as the
basis for generalization. Nearest neighbor approaches and support vector machines (kernel
machines) [67] are two representative categories of analogizers in machine learning.

The k-nearest neighbors algorithm (k-NN) is a non-parametric method widely used for clas-
sification. The input consists of the k nearest training examples in the formed feature space.
The output is a class membership defined by a majority vote of identified neighbors, i.e. a new
example is assigned to the class most common among its k nearest neighbors. If k = 1, the class
label of that single nearest neighbor is assigned. k-NN is a type of instance-based learning,
or so-called lazy learning. The classification function is only approximated locally. The com-
putations (querying for k nearest neighbors and then deciding on the label) are perform at the
classification, i.e. there is no training phase as such. The k-NN algorithm is among the simplest
and most wide-spread of all machine learning algorithms. If we can define a suitable similarity
computation, i.e. given two objects X1 and X2, determine a value of the similarity Sim(X1,X2)
between the two objects, we can use k-NN for classification, clustering, ranking, outlier analy-
sis, searching for top n closest matches, query by example, etc on various complex data types
going beyond vector space representation and Euclidian distance. Luckily, lots of effective si-
milarity measures have been introduced already. We can use them for measuring how alike
are two nodes in a graph (SimRank [161], PathSim [234]), a pair of time-series shapes (DTW,
LCSS), a pair of documents (cosine-semilarity), a pair of strings of text (Edit or Levenshtein)
etc.

Support vector machines (SVM) represent training examples as points in space. During the
training phase they are mapped such that the examples of one class are divided from examples
of another class by as wide gap as possible. The gap is defined by corresponding support vectors
from each class. New examples to be classified are mapped into the same space. A class label
is assigned depending on which side of the gap a new instance fall.

Please note that each kind of such techniques can be adopted for all or most of the categories
of the data mining tasks discussed in the previous section. We discussed the case of the nearest
neighbour like approaches above. But many other approaches, e.g. SVMs can be used for
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classification [1], clustering [31] and outlier detection [14]. Similarly, deep learning approaches
exist for classification, clustering, and anomaly detection.

Besides learning an individual global model for classification, clustering or anomaly detection, it
is common to consider ensemble learning – inducing a finite set of alternative models that are used
together (e.g. simply vote) to produce a final decision. Many ensemble learning approaches including
bagging, boosting and other ideas have proven to be effective in practice. Random forest [45] and
modern boosting like XGBoost [58] techniques are among the current state of the art best performers.

Disregarding whether we consider individual learners or ensembles, all of them consist of three
main components, each introducing bias to what kind of models they favor [82]:

Representation – some formal language in which model is described; its expressive power defines
the hypothesis space and what concepts can be learnt (e.g. a linear classifier can model only
linearly separable concepts; an ensemble of linear classifier can be already much more expres-
sive).

Evaluation – a scoring function that says how good a model is that in turn help to choose one hypot-
hesis over the other. In symbolic learning we use accuracy (fraction of correct predictions) or
information gain. In neural networks we use a continuous error measure, e.g. squared error –
the sum of the squares of the differences between the predicted and the true values. In Bayesian
learning the posterior probabilities are used, in SVMs – the margin defining the width of the
gap we try to maximize. The minimal description length principle can be used to control for
model complexity.

Optimization – a mechanism defining how to search the hypothesis space such that we have a good
chance to find the highest-scoring model efficiently. For many learners, it is common to start
with the most simple hypothesis, relaxing it if needed to explain the data more accurately. In
symbolic learning, characteristic search algorithm is inverse deduction, in neural networks –
gradient descent, in evolutionary approaches – genetic search, including crossover and muta-
tion. In SVMs – constrained optimization is used.

3.3 Data Mining Process

Recall the e-mail spam classification example introduced in Section 3.1. There are several issues to
consider along the classifier training process – how to formulate the classification task, how to process
e-mails to extract features and form training instances, how to eliminate noise and redundancy and
keep the predictive features, how to choose a suitable classification technique, how to evaluate and
optimize the classification model through (hyper-parameter) model selection. These different aspects
of the problem brings us to the consideration of the data mining as a process.

The CRISP-DM model [55] describes the classical data mining process, where the life cycle of
a data mining project spans over six phases: business understanding, data understanding, data prepa-
ration, modeling, evaluation and deployment. Reinartz’s framework [221] follows CRISP-DM with
some modifications, making modeling steps more explicit. The high-level process steps are summari-
zed in Figure 1.

The business understanding phase aims at formulating business questions, and translating them
into data mining goals. The data understanding phase aims at analyzing and documenting the avai-
lable data and knowledge sources in the business according to the formulated goals, and providing
initial characterization of data. The data preparation phase starts from target data selection that is
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Fig. 4. Knowledge discovery process: from problem understanding to deployment
(adapted from [37])

present good examples of such attempts. However, others may think that
the current diversity in theoretical foundations and research methods is a
good thing and also it might be more reasonable to search for an umbrella-
framework that would cover the existing variety.

Another direction of research could lie in addressing data to be mined,
DM models, and reality views through the prism of the philosophy of science
paradigm, that includes consideration of nominalistic vs. realistic ontologi-
cal beliefs, voluntaristic vs. deterministic assumptions about the nature of
every instance constituting the observed data, subjectivist vs. objectivist ap-
proaches to model construction, ideographic vs. nomothetic view at reality;
and epistemological assumptions about how a criterion to validate knowledge
discovered can be constructed.

SPSS whitepaper [6] states that ”Unless there’s a method, there’s mad-
ness”. It is accepted that just by pushing a button someone should not expect
useful results to appear. An industry standard to DM projects CRISP-DM
is a good initiative and a starting point directed towards the development of
DM meta-artifact (methodology to produce DM artifacts). However, in our
opinion it is just one guideline, which is in too general-level, that every DM
developer follows with or without success to some extent. Process-oriented
frameworks try to address the iterativeness and interactiveness of the DM
process. However, the development process of DM artifact and use of that
artifact are poorly emphasized.

Lin in Wu et al. [40] notices that a new successful industry (as DM) can
follow consecutive phases: (1) discovering a new idea, (2) ensuring its ap-
plicability, (3) producing small-scale systems to test the market, (4) better

Figure 1: Knowledge discovery process: from problem understanding to deployment. Arrows indicate
the most important and frequent dependencies between the phases (adapted from [221]).

often related to the problem of building and maintaining useful data warehouses. After selection, the
target data is pre-processed in order to reduce the level of noise, pre-process the missing information,
reduce data, and remove obviously redundant features. Next, the data exploration phase aims at pro-
viding the first insight into the data, evaluate the initial hypotheses, usually, by means of descriptive
statistics and visualization techniques. The Data mining phase covers selection and application of
data mining techniques, initialization and further calibration of their parameters to optimal values.
The Evaluation phase typically considers offline evaluation on historical data. In predictive modeling,
one would typically analyze simulated performance of the data mining system with respect to some
suitable measures of accuracy (such as precision, recall, or AUC, among others), or utility (for in-
stance, expressed as cost-sensitive classification). Finally, the most promising predictive model is
deployed in operational settings, and the performance is regularly followed up.

Data mining techniques are aimed to be generic, i.e. being applicable on variety of data types and
application settings. However, different application settings bring in certain constrains on the choice
of possible data mining approaches. Next, we provide an overview of typical data mining tasks across
different applications and then discuss the variety of application settings.

3.4 Data Mining Applications

Data mining already plays an important role, or has a high potential to be deployed in a number of
applications. Several categories of such application domains have been summarized in [172]. Ta-
ble 2 presents the summary of categorization of applications grouped into three application blocks:
monitoring and control, information management, and analytics and diagnostics.

For a compact representation each industry (rows) is assigned a group of applications that share
common supervised tasks. As it can be seen from the table, for each of the industries or groups of
industries, more than one application type can be relevant. More generally, given an application use
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case, several data mining tasks have to be defined and addressed to get a practical solution.

Table 2: Categorization of applications by type and industry.

Industrial Appli-
cations

Monitoring and
control

Information ma-
nagement

Analytics and
diagnostics

Healthcare and
wellbeing

stress detection,
anesthesia control

re-hospitalization
prediction

medical diagnos-
tics, antibiotic re-
sistance prediction

Security, Police fraud detection,
insider trading de-
tection, adversary
actions detection

next crime place
prediction

crime volume pre-
diction

Finance, Ban-
king, Telecom,
Insurance, Mar-
keting, Retail,
Advertising

monitoring & ma-
nagement of cus-
tomer segments,
bankruptcy pre-
diction

product or service
recommendation,
including compli-
mentary, user in-
tent or information
need prediction

demand prediction,
response rate pre-
diction, budget
planning

Production indu-
stry

controlling output
quality

– predict bottlenecks

Education (e-
Learning, e-
Health), Media,
Entertainment

gaming the system,
drop out prediction

music, VOD, mo-
vie, news, learning
object personalized
search & recom-
mendations

player-centered
game design,
learner-centered
education

3.5 Operational Settings and Learning Modes

Real application tasks can be mapped into several dimensions, including in particular; properties
of the learning task, environment from which data comes, and (online) operational settings. This
information is essential to determine the characteristics that the learning system needs to possess, the
properties that must be prioritized when designing such a system and the evaluation criteria of the
system performance. Table 3 summarizes some of the properties of the application tasks [172].

Operational settings determine availability of the ground truth in an online operation, such as, arri-
val of true labels in classification, or true target values in regression tasks. Labels may become known
immediately in the next time step after casting the prediction (e.g. food sales prediction). Labels may
arrive within a fixed or variable time lag (in credit scoring typically the horizon of bankruptcy pre-
diction is fixed, for instance, to one year, thus true labels become known after one year has passed).
Alternatively, the setting may allow to obtain labels on demand (e.g. in spam categorization we can
ask the user the true status of a given message).

Requirements for the speed of decision making need to be considered when selecting, which
algorithms to deploy. We shall recall in data mining we have training phase and application phase,
and operational constrains may differ for each of these phases, i.e. time constrains for training a model
vs. time constrains for casting predictions. In some applications prediction decisions may be required
immediately (fraud detection), the sooner the better, while for other analytical decisions timing may
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Table 3: Summary of properties of applications [172].

D
at

a
an

d
ta

sk task: prediction, classification, detection, clustering, itemset mining;
input data type: time series, relational, graph, bags or mix;
incoming data: stream, batches, collection iterations on demand;
complexity: volume; multiple scans; dimensionality;
missing values: unlikely, random, systematic;

O
pe

ra
tio

na
l

se
tt

in
gs

label availability: real time, on demand, fixed lag, variable lag;
decision speed: real time, analytical;
costs of mistakes: balanced, unbalanced;
true labels: objective, subjective;

be more flexible (e.g. credit scoring decision may reasonably take one-two weeks).
The cost of errors is an aspect to consider when selecting an evaluation metric for monitoring

of performance. In traditional supervised learning different types of errors (e.g. false positives, false
negatives) may resolve to different losses. In some applications prediction accuracy may be the main
performance metric (e.g. in online mass flow prediction), in other applications accurate and timely
identification of changes as well as accurate prediction are important (e.g. in demand prediction). In
the online setting, discrepancies in time may as well have associated error costs (for instance, too
early prediction of a peak in food sales would still allow to sell the extra products later, but too late
prediction would lead to throwing away the excess products).

Finally, the ground truth labels may be objective based on clearly defined and accepted rules (e.g.
bankrupt or not bankrupt company) or subjective, based on a personal opinion (e.g. interesting or not
interesting article). Alternatively, the true labels may not be available at all being impossible or too
costly to measure or define in a direct way.

For the training data itseld it is possible to distinguish two high-level types of data, dependency-
and nondependency-oriented data. E.g. when dealing with vector-space (feature-value) representation
of examples (also called instances, tuples or data points) it is common to make i.i.d. (independent and
identically distributed) assumptions about the data. However, when we consider time-series data or
graph data, it is common to model corresponding dependencies.

We can distinguish two learning modes: offline learning and online learning. In offline learning the
whole training data must be available at the time of model training. Only when training is completed
the model can be used for predicting. In contrast, online algorithms process data sequentially. They
produce a model and put it in operation without having the complete training data set available at the
beginning. The model is continuously updated during operation as more training data arrives.

Less restrictive than online algorithms are incremental algorithms that process input examples
one-by-one (or batch-by-batch) and update the decision model after receiving each example. Incre-
mental algorithms may have random access to previous examples or representative/selected examples.
In such a case these algorithms are called incremental algorithms with partial memory [177]. Typi-
cally, in incremental algorithms, for any new presentation of data, the update operation of the model
is based on the previous one. Streaming algorithms are online algorithms for processing high-speed
continuous flows of data. In streaming, examples are processed sequentially as well and can be ex-
amined in only a few passes (typically just one). These algorithms use limited memory and limited
processing time per item. Such settings are discuss in the streaming computing model in Section 5.

For example considering our e-mail classification task, we can have only some e-mails labeled to
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spam vs. relevant ones and many more unlabeled. This can encourage us to use semi-supervised
learning approaches that make use of both labeled and unlabeled examples combined, e.g. using
expectation-maximization approaches. Depending on our assumptions on data availability and their
distribution we can use methods for incremental classification, online classification, active learning,
adaptive learning, multi-task learning, one-class learning, or transfer learning.

Data mining on streaming data has two main perspectives or kinds of challenges to address:

• keeping representation and models uptodate, i.e. addressing the problem that data distribution
and concepts change over time (cf. variability and volatility);

• on-the-fly (near) real-time processing settings assuming a streaming computing model (in par-
ticular, we can read data only once).

We overview there two perspectives one by one in the next sections.
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4 Streaming: Learning over Evolving Data

In the era of big data, many data mining projects shift their emphasis towards the evolving nature of
the data that requires us to study the automation of feedback loops more thoroughly. In the standard
data mining and machine learning settings the majority of algorithmic techniques have been resear-
ched and developed under the assumption of identical and independent data distribution (i.i.d). In big
data applications data arrives in a stream, and patterns in the data are expected to evolve over time,
therefore, it is not practical, and often is not feasible to involve a data mining expert to monitor the
performance of the models and to retrain the models every time they become outdated. Therefore, in-
terest towards automating development and update of predictive models in the streaming data settings
has been increasing.

Because data is expected to evolve over time - especially in dynamically changing environments,
where non-stationarity is typical, its underlying distribution can change dynamically over time. The
general assumption in the concept drift setting is that the change happens unexpectedly and is unpre-
dictable, although in some particular real-world situations the change can be known ahead of time in
correlation with the occurrence of particular environmental events. But solutions for the general case
of drift entail the solutions for the particular cases. Moreover the change may take different forms,
i.e. the input data characteristics or the relation between the input data and the target variable may
change. We briefly summarize the problem of concept drift in the following section.

The traditional supervised learning assumes that the training and the application data come from
the same distribution, as illustrated in Figure 2 (a). An online setting brings additional challenges,
since it may be expected for the data distribution to change over time. Thus, at any point in time the
testing data may be coming from a different distribution than the training data has come, as illustrated
in Figure 2 (b).

Historical
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system
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labels?

Source
(distribution)

Historical
data
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Learning 
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 2
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Figure 2: Supervised learning in (a) stationary and (b) non-stationary environments [172].

In the streaming settings, it is common to expect changes in data and model applicability. The-
refore, monitoring of model performance and model update or relearning becomes a natural and core
part of the data mining process (Figure 3). The main difference with the standard process is that now
data preparation, mining, and evaluation steps are automated, there is no manual data exploration, and
there is automated monitoring of performance, including change detection and alert services, after
deployment.

4.1 Concept Drift

Concept drift is used as a generic term to describe computational problems with changes over time.
These changes may be of countless different types and there are different types of applications that
call for different adaptation techniques. Characteristics of change can be summarized with respect to:
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Figure 3: Towards CRISP for Adaptive Data Mining.

• change source: adversary activities, changes of preferences, population change, complex envi-
ronment;

• change type: sudden, incremental, gradual, reoccurring;

• change expectation: unpredictable, predictable, identifiable (meta);

• change visibility: direct/indirect; visual inspection, ground truth.

One of the most illustrative cases, is learning against an adversary (e.g. spam filters, intrusion de-
tection). A predictive model aims at identifying patterns characteristic of the adversary activity, while
the adversary is aware that adaptive learning is used, and tries to change the behavior. Another context
is learning in the presence of hidden variables. User modelling is one of the most popular learning
tasks, where the learning system constructs a model of the user intentions, which are not observable
and may change over time. Drift also occurs in monitoring tasks and predictive maintenance. Lear-
ning the behaviour of a system (e.g. the quality of products in industrial process) where degradation
of equipment occurs over time.

It is not surprising that the problem of concept drift has been studied in several research commu-
nities including but not limited to pattern mining, machine learning and data mining, data streams,
information retrieval, and recommender systems. Different approaches for detecting and handling
concept drift have been proposed in research literature, and many of them have already proven their
potential in a wide range of application domains.

In machine learning, data mining and predictive analytics unexpected changes in underlying data
distribution over time are referred to as concept drift [112, 235, 192, 247]. In pattern recognition the
phenomenon is known as covariate shift or dataset shift [192]. In signal processing the phenomenon
is known as non-stationarity [126]. Formally concept drift between time point t0 and time point t1 can
be defined as

∃X : pt0(X ,y) 6= pt1(X ,y),

where pt0 denotes the joint distribution at time t0 between the set of input variables X and the target
variable y. Changes in data can be characterized as changes in the components of this relation [148,
114]. In other terms, the prior probabilities of classes p(y) or the class conditional probabilities
p(X |y) may change, and as a result, the posterior probabilities of classes p(y|X) may change affecting
the prediction.

We are interested to know two implications of these changes. First, we are interested to know
(i) whether the data distribution p(y|X) changes and affects the predictive decision and (ii) whether
the changes are visible from the data distribution without knowing the true labels, i.e. p(X) changes.
From a predictive perspective only the changes that affect the prediction decision require adaptation.

We can distinguish the following types of drifts:
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1. Real concept drift refers to changes in p(y|X). Such changes can happen either with or without
change in p(X). Real concept drift has been referred to as concept shift in [227] and conditional
change in [114].

2. Population drift refers to changes in the population from which future samples will be drawn
compared the design/training sample was drawn[148].

3. Virtual drift happens if the distribution of the incoming data changes (i.e., p(X) changes) wit-
hout affecting p(y|X) [246].

4.2 Adaptive Learning Strategies

Different strategies for updating learning models have been developed. Many classification techniques
have been redesigned for streaming settings. Hoeffding trees [84] would be a popular example of
decision tree learning on streaming data.

Two main strategies for adaptive learning can be distinguished. Learning models may evolve
continuously, for instance, models can be periodically retrained using a sliding window of a fixed size
over the past data [247].

Alternatively, learning models may use trigger mechanisms, to initiate a model update. Typically,
statistical change detection tests are used as triggers. Incoming data is continuously monitored, if
changes are suspected, the trigger issues an alert, and adaptive actions are taken. When a change is
signalled, the old training data is dropped and the model is updated using the latest data.

Learning systems can use single models or ensembles of models. Single model algorithms employ
only one model for decision making at a time. Once the model is updated, the old one is permanently
discarded. Ensembles, on the other hand, maintain some memory of different concepts. The prediction
decisions are made either fusing the votes casted by different models or nominating the most suitable
model for the time being from the pool of existing models.

Ensembles can be evolving or have trigger mechanisms as well. Evolving ensembles build and
validate new models as new data arrives, the rule for model combination is dynamically updated based
on the performance (e.g. [188]). Ensembles with triggers proactively assign the most relevant models
for decision maxing based on the context (e.g. [236]).

Surveys and categorization of different approaches for handling concept drift can be found in [112,
235, 192].

A closely related settings is transfer learning: similarly to the problem of concept drift we anti-
cipate that the data used for model training and data in the application settings come from different
distributions and we can observe some of the new data (e.g. we get a new batch of data and can
compute how different the data distributions are). A comprehensive overview of transfer learning
strategies can be found in [213].

In this section we focused on discussion the data mining approaches that deal with the evolving
nature of data disregarding the streaming computing model, i.e. the efficiency of model (re)training
and application was not in the spotlight. In the next section we discuss the streaming computing model
and data mining approaches that follow it.
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5 Streaming: Small-Space Algorithms

5.1 Streaming as Model of Computation

A data stream is an ordered sequence of data items, possibly of infinite length, whose data can only
be accessed sequentially in forward direction, typically one item at a time. A stream optionally admits
multi-pass data traversal, in this case the stream should obviously have finite length. Streams are
useful in settings where the entire data set does not fit in memory of the computer used to process
it. In more formal words, let A = (a1, . . . ,am) denote a finite-length stream of length m, where each
ai ∈ [n]. Then, the goal in streaming is to process data in space7 much less than m logn, ideally
sub-linear or even logarithmic in n and m.

The streaming model may be viewed as an impediment for a computational task, i.e., certain
computations that yield an exact answer in a random-access batch setting are not possible in the
streaming setting; approximations have to be used. The challenge in designing algorithms that operate
on streams, streaming algorithms, is to obtain good approximations while requiring minimal number
of passes (ideally just one) and minimal storage of state information (and for practical purposes,
minimal computational work, although this is not the primary concern in the streaming setting). The
state information in the context of streaming algorithms is commonly called a sketch of the data
stream.

In the literature, one encounters two models of streaming: the cash-register model and the turnstile
model. To explain these models, it is easiest to generalize our notion of a stream to a sequence of pairs
(ai,ki), where ki ∈Z\{0} represents the “multiplicity” of ai. In the cash-register model, which is more
common, every ki is positive. In this case, the pair may just be viewed as a more concise representation
(a “runlength encoding”) of a number of consecutive identical values in the stream. Furthermore, we
can always flatten a cash-register stream (i.e., apply the corresponding runlength decoding) into the
representation of a stream defined at the beginning of this section. In the turnstile model, however, the
ki can be negative (hence, we wrote multiplicity in quotes). Hence, in the turnstile model the events
are either “arrivals” or “departures”, depending on the sign of ki. Just think of an actual turnstile that
counts people who either enter or leave a building. In this case, for example, one could determine the
number of people that are currently (at time t) inside the building by computing the cumulative sum
of the events, i.e., ∑

t
i=1 aiki (of course, under the assumption that the building was empty when the

stream started). We will be working in the cash-register model unless we mention otherwise.

5.2 History

The streaming model of computation goes back to papers from the late 1970s by Munro and Paterson
[195] and Morris [193], and was motivated by hardware constraints like the particular data-access
properties of storage media used at that time (tape) and the limited amount of memory in computers
[195], and low-precision arithmetic in embedded systems [193]. The latter work (by Morris) focused
on approximate counting of a number of events, denoted by N, using `-bit registers, with `� log2 N,
hence, a non-trivial problem. Morris’ solution involves storing a carefully chosen approximation to
the logarithm of the number of counts. Note that due to the scope of this document, we cannot give
an exhaustive history of the field of streaming computation; we will highlight some seminal works
instead. Flajolet and Martin (FOCS, 1983) [105] were the first to study approximate counting of
distinct elements in the streaming model. In fact, many other works in streaming focus on various
forms of approximate counting. Alon, Matias and Szegedy [13] formalized counting in the streaming

7Here we mean space in the complexity-theoretic sense.
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setting, for which they received the Gödel Prize in 2005. Their results are about the frequency mo-
ments of a stream, which are defined as follows. Let mi := |{ j ∈ [m] : a j = i}| denote the frequency
of occurrence of the value i in the stream A, and define for any real number k the frequency moments
of A as

Fk :=
n

∑
i=1

mk
i .

Note that using this notion, we can now classify the work of Morris [193] as one that estimates F1,
while Flajolet and Martin [105] estimate F0. In particular, the work of Flajolet and Martin gave rise
to a substantial line of research into approximating F0, which was finally closed in 2010 by Kane et
al. [144]. The number F2 is known under various names like Gini’s index of homogeneity, repeat rate,
and self-join size.

Another extensively studied problem in the streaming setting is to estimate the frequencies mi

themselves (rather than the frequency moments). Well-known algorithms in the context of this pro-
blem are the Count Sketch [56], and the Count-Min Sketch [63].

5.3 Lower Bounds for Frequency Moments

Definition 1 We say that an algorithm A (ε,δ )-approximates X if A outputs a number X̂ such that

Pr[|X̂−X |> εX ]< δ .

Another key quantity defined in [13] is

F∗∞ := max
i∈[n]

mi = lim
k→∞

k
√

Fk,

i.e., the number of occurrences of the most frequent element. The following result tells us that there
is no sub-linear algorithm for approximating F∗∞

Proposition 1 ([13]) Any randomized algorithm that, given a sequence A of at most 2n elements from
the set [n], (1/3,δ )-approximates F∗∞ for some fixed δ < 1/2, must use Ω(n) bits of space.

The following result emphasizes the importance of probabilistic (instead of deterministic) algorithms
in the streaming setting.

Proposition 2 ([13]) For any nonnegative integer k 6= 1, any deterministic algorithm that, given a
sequence A of n/2 elements from the set [n], outputs a number Y such that |Y −Fk| ≤ 0.1Fk must use
Ω(n) bits of space.

Furthermore, in the context of frequency moments, approximation rather than exact computation is
necessary to achieve sub-linear space:

Proposition 3 ([13]) For any nonnegative integer k 6= 1, any randomized algorithm that, given a se-
quence A of at most 2n elements from the set [n], outputs a number Y such that Y = Fk with probability
at least 1− ε for some fixed ε < 1/2 must use Ω(n) bits of space.
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5.3.1 Lower Bounds for F0, F1, F2 and Fk

Proposition 4 ([13]) Let A be a sequence of at most m elements from the set [n].

(i) Any randomized algorithm for (0.1,3/4)-approximating F0 must use at least Ω(logn) bits of
space.

(ii) Any randomized algorithm for (0.1,3/4)-approximating F1 must use at least Ω(log logn) bits
of space.

(iii) Any randomized algorithm for (0.1,3/4)-approximating F2 must use at least Ω(logn+log logm)
bits of space.

Proposition 5 ([13]) For any fixed integer k > 5 and non-negative real number δ < 1/2, any rand-
omized algorithm that, given an input sequence A of at most n elements from the set [n], (0.1,δ )-
approximates Fk uses at least Ω(n1−5/k) bits of space.

Proposition 6 ([249]) Any one-pass randomized algorithm that, given a sequence A with elements
from the set [n], (ε,δ )-approximates the k-th frequency moment Fk for any real k 6= 1 and any ε =
Ω( 1√

n) for some fixed δ < 1/2, must use Ω
( 1

ε2

)
bits of space.

5.4 Basic Examples of Streaming

Let us briefly recall the symbols defined in Section 5.1 and 5.2: A = (a1, . . . ,am) represents a stream
of elements, where each element ai ∈ [n], and mi denotes the number of occurrences of ai in A.

5.4.1 Majority

Here we present a simple deterministic, single-pass algorithm by Boyer and Moore [42] for finding
the majority element, i.e., an element i for which mi > m/2, given the promise that there exist such an
element. The algorithm maintains a state that consists of the current candidate element and a single
counter, hence the algorithm has O(logn+ logm) space complexity. The algorithm is as follows.

If the promise is absent, then finding the majority element in one round requires linear space.
Nonetheless, if one can afford to use a second pass over the stream, then it is possible to determine
whether a majority element exists in sub-linear space, by using this second pass to count exactly how
many times the candidate element (found in the first pass, using the above algorithm) occurs in the
stream.

5.4.2 Distinct Elements

In this section we aim to find a (ε,δ )-approximation to F0, the number of distinct elements in the
stream. As we have seen in Section 5.3, it is impossible to compute F0 exactly (ε = 0) or accurately
estimate F0 using a deterministic algorithm (δ = 0) in sub-linear space. We will present a randomized
algorithm for approximating F0 from Alon et al. [13]. The algorithm’s main building block is a
2-universal hash function.

Definition 2 A family of hash functions H := {hi} where hi : X → Y for all i, is called 2-universal
if

Pr
H

[
H(x) = H(x′)

]
≤ 2
|Y |

∀x,x′ ∈X

where the random variable H is uniformly distributed over the family H .
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Data: the stream A, and the promise that A contains a majority element
Result: the majority element (stored in the variable named “candidate”)
counter := 0;
candidate := ⊥;
for i = 1:m do

if counter == 0 then
counter := 1;
candidate := ai;

else
if candidate == ai then

counter += 1 ;
else

counter -= 1 ;
end

end
end

Algorithm 1: A Deterministic Algorithm for Majority

Furthermore, let zeros(x) for any x ∈N be the function that returns the number of trailing zeros in the
bit representation of x, i.e.,

zeros(x) = max{i : 2i divides x}.

The algorithm is shown as Algorithm 2 and runs in space O(logn).8 With respect to the accuracy of
the estimate, it can be shown (by applying the Markov inequality and the Chebyshev inequality) that
for any c > 0, it holds that

Pr
(

F̂0

F0
/∈
[

1
c
,c
])
≤ 2

c
.

This rather weak bound can be easily improved to a (O(1),δ ) approximation, for δ > 0 arbitrary,
by running k = Θ(1/δ ) instances in parallel, and taking the median of their outputs. This gives a
O(logn · log(1/δ ))-space algorithm.

Data: the stream A
Result: F̂0, being an estimate of F0 (the number of distinct elements in A)
z := 0;
choose h : [n]→ [n] from a 2-universal family;
for i = 1:m do

if zeros(h(ai))> z then
z := zeros(h(ai))

end
F̂0 := 2z.

Algorithm 2: The AMS algorithm for estimating F0 [13]

8Here, the logn factor comes from computing the hash function, storing z only requires O(log logn) space.
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5.4.3 The Heavy Hitters Problem

In the Heavy Hitters (or frequent items) problem, parameterized by integer k≥ 0, the task is to output
the set of elements

Fk := {i ∈ [n] : mi > m/k}.

One deterministic two-pass algorithm is based on the Misra–Gries algorithm, shown in Algorithm 3,
which is a generalization of Algorithm 1 to k− 1 counters. In the algorithm description, M is an
associative array, where M[x] represents the value indexed by key x, and we write keys(M) for the set
of keys of M. For positive integer k, the Misra–Gries algorithm returns a set of elements Sk such that

Sk := {i ∈ [n] : mi−
m
k
≤ m̂i ≤ mi},

where m̂i := Mfinal[ai], where Mfinal represents the state of M after completion of the algorithm. It
follows that Fk ⊆Sk. Hence, in a second pass, we can construct Fk by counting the frequency of the
elements in Sk exactly, in order to determine if they should be included in Fk.

Data: the stream A, parameter k
Result: a set of elements Sk, such that Fk ⊆Sk.
for i = 1:m do

if ai ∈ keys(M) then
M[ai] += 1;

else if |keys(M)|< k−1 then
Create M[ai];
M[ai] := 1;

else
for x ∈ keys(M) do

M[k] -= 1 ;
if M[x] == 0 then

Remove M[x];
end

end
end

end
Sk := keys(M).

Algorithm 3: The Misra–Gries Algorithm

One-pass probabilistic algorithms: the Count Sketch and the Count-Min Sketch To solve the
Heavy Hitters problem in one pass over the data (recall that the Misra–Gries-based solution requires
two passes), we require probabilistic algorithms. Two well-known hash-function-based algorithms for
this problem are the Count-Sketch [56], and the Count-Min Sketch [63]. In fact, these algorithms can
estimate the frequency of any symbol appearing in the stream. The performance of both algorithms
is compared in Table 4, where mī denotes the vector (m j) j∈[n]\i. Although the Count-Min Sketch is a
somewhat simpler algorithm, its analysis yields an error bound in terms of the `1 norm, whereas the
analysis of the Count-Sketch algorithm gives an error bound in terms of the `2 norm. The latter is
more desirable because ‖x‖2 ≤ ‖x‖1 ≤

√
n‖x‖2 holds for any vector x = (x1, . . . ,xn) ∈ Rn. For more

information about these methods, we refer to [52] as well as the original papers.

September 29, 2017 D2.1 State of the Art 47



H2020-LEIT-ICT 731583 SODA Deliverable D2.1

5.4.4 Frequent Itemset Mining

Given a sequence B = (b1, . . . ,bm), where bi ⊆ [n] for all i ∈ [m], the Frequent itemset mining problem
is to find the collection of non-empty subsets

Gt := {g j ⊆ [n] : |g j| ≥ 1, |{i : g j ⊆ bi}| ≥ t}

for some threshold t ∈ N.
A canonical application of frequent itemset mining is in the retail business, where it is used to

discover non-trivial (by which we mean: non-common-sense) combinations of products that are often
bought together, like diapers and beer.9 In this retail setting, the items of the universe [n] represent
products in a shop, and a set bi represents a transaction, i.e., the contents of a customer’s shopping
cart. As an example, Table 5 shows the items bought by four customers, for which, for example,
G3 = {milk,chocolate,bread,{chocolate,bread}}, where we remark that the labels “milk”, “bread”,
etc. are in one-to-one correspondence with the elements of the universe {1, . . . , 5}.

In the context of privacy-preserving data mining, another interesting application could be the
discovery of new “biomarkers” (like genes and proteins in a patient’s blood), which are indicators for
particular diseases.

A related problem is association rule mining, which are, informally speaking, rules like “if a
customer buys milk and bread, then he is likely to buy chocolate as well”. Although we will not go
into the details of association rule mining, we wish to remark that in order to mine such association
rules, one typically first needs to solve the frequent itemset mining problem.

Computing Gt A key observation that is useful for computing Gt , is the monotonicity property for
itemsets:

Definition 3 (Monotonicity Property) If a set S ∈ Gt , then every non-empty subset of S is also an
element of Gt .

This property is the basis for the Apriori algorithm [8]. In particular, the Apriori algorithm requires t
passes over the data to compute Gt .

Various other algorithms have been proposed in the literature to decrease the number of passes,
and to make use of approximations to lower the space requirements. For an overview, we refer to
[168].

Frequent itemset mining in infinite streams When the length of a stream grows with time, or,
in other words, the stream never ends, frequent item sets will typically vary over time, hence in the
infinite-length-stream setting it may make sense to redefine the meaning of “frequent” relative to a

9An explanation for the purchasing-dependence between diapers and beer is that parents of young children typically
have their beer at home instead of in the bar.

Table 4: Comparison of the Count Sketch and Count-Min Sketch (reproduced from [52])

Algorithm Error Space complexity

Count Sketch Pr(m̂i−mi ∈ [−ε‖mī‖2,ε‖mī‖2])≥ 1−δ O
( 1

ε2 log 1
δ
(logm+ logn)

)
Count-Min Sketch m̂i ≥ mi, Pr(m̂i ≤ mi + ε‖mī‖1)≥ 1−δ O

( 1
ε

log 1
δ
(logm+ logn)

)

September 29, 2017 D2.1 State of the Art 48



H2020-LEIT-ICT 731583 SODA Deliverable D2.1

Table 5: An example to explain frequent itemset mining: customers buying products

milk bread cheese meat chocolate

Alice • •
Bob • • •
Charly • • • •
Daniel • • • •

given time window. Technically, this usually comes down to letting every counter used by some
algorithm decay over time, i.e., by multiplying each counter value in every iteration with 1− τ for
some small τ > 0.

5.5 Secure Streaming

Melis et al. [183] apply the count-min and count sketch for counting aggregate quantities in a privacy-
preserving manner. They target three different applications: (i) content recommendation systems, (ii)
aggregated location monitoring (i.e., aggregated counts of the number of users in each partition of a
given area, without revealing the position of individual users) and (iii) securely computing median
statistics from servers that run the TOR network. For the first two applications, the aggregation comes
down to securely adding values, where users mask their private input in a special way, such that the
sum over the masks of all users vanishes. For the third application, a threshold public-key encryption
scheme is used to aggregate the sketches. Their constructions are secure in the semi-honest model.
In addition to approaching privacy from a cryptography perspective, the authors also analyze the
aggregation of sketches from a differential-privacy perspective.

Corrigan-Gibbs and Boneh [64] outline how the work of Melis et al. [183] can be extended to the
malicious-adversary setting, using their “Prio” framework.

Burkhart et al. [47] focus on aggregation of network events in a privacy-preserving manner. In
particular, they propose a method to count distinct elements, but using a simple (not small-space)
algorithm. Their framework, called SEPIA, is based on Shamir secret sharing and is secure in the
semi-honest setting.

Bogdanov et al. [35] compute histograms from secret-shared data in Sharemind. The histogram’s
frequencies are computed securely from secret-shared input data, after which the histogram is opened
publicly. The histogram is computed in a straight-forward (non small-space) manner. Additionally,
the authors implement the Apriori and Eclat algorithms for frequent itemset mining in Sharemind.

5.6 Further Reading

We refer to Chakrabarti [52] and Roughgarden [225] for excellent lecture notes on the topic of strea-
ming computation, as well as to the data mining book by Leskovec et al. [168], which also includes a
chapter about frequent itemset mining in the streaming setting.

Lower bounds can be found in Alon et al. [13], Bar Yossef [22], Indyk and Woodruff [133] and
Woodruff [249].
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6 Privacy-Preserving Data Mining

6.1 Multiparty Computation in the Privacy-Preserving Data Mining Landscape

In this section, we give a general overview of the field of privacy-preserving data mining, and the
role of multiparty computation in this landscape. All privacy-preserving data mining approaches have
the common aim to protect sensitive data used in data mining algorithms. In particular, what these
approaches have in common is that they somehow involve data owners, who have data they want to
protect, and other parties who want to learn a data mining outcome.

Several variants of privacy-preserving data mining can be identified based on who performs the
data mining. In traditional privacy-preserving data mining, there is one data owner, and the data mi-
ning itself is performed by a different party (Section 6.1.1). In distributed privacy-preserving data
mining, there are multiple data owners whose combined data needs to be mined in a collaborative
fashion, either by the owners themselves or by one or more third parties (Section 6.1.2). The MPC
techniques to be developed in the SODA project fall into this category; the state-of-the-art in MPC is
given later so in this section we focus on non-MPC techniques. Finally, privacy-preserving querying
considers the setting where the data mining takes place by the data owner itself, in which case mea-
sures need to be taken that the data mining output itself does not reveal too much information about
the underlying sensitive dataset. As discussed, this problem can also be considered in setting with
multiple data owners, for instance in combination with MPC as the SODA project aims to do with its
leakage control component (Section 6.1.3).

Although the SODA techniques fall mostly in the second category of distributed privacy-preserving
data mining, awareness of techniques from the two other categories is useful for a succesful execution
of the project. Specifically, ideas from privacy-preserving data mining to “transform” sensitive data
into a form that can be processed without leaking information to the processor, when implemented
well, can help to avoid performing computations fully under encryption, which would be prohibiti-
vely slow. Similarly, ideas from protecting computation output can help understand to what extent
the decryption of intermediate results in an encrypted computation (such as intermediate versions of
a classifier in iterative training techniques) degrades privacy.

6.1.1 Privacy-preserving data mining

In privacy-preserving data mining (PPDM), a data owner transforms its sensitive dataset in such a
way that sensitive data is removed, but data mining on the transformed dataset is still possible. Many
transformation techniques are designed specifically with a particular kind of analysis in mind. Howe-
ver, there are also techniques that remove sensitive information regardless of what mining algorithm
is to be run on the transformed data; this is also known as privacy-preserving data publishing (PPDP).

PPDM techniques that are commonly identified in the literature (e.g, [240, 4]), include pertur-
bation, blocking, merging/aggregation, swapping, and sampling. In perturbation, noise is added to
records in the dataset in such a way that it hides values for individual records, but most of it “cancels
out” when performing data mining. The kind of noise to be added and the amount of utility it can pre-
serve, clearly depend on the data mining algorithm at hand; for instance, some data mining algorithms
require additive noise while others require multiplicative noise. Applications include classification ba-
sed on decision trees [7], mining of association rules [102], and clustering [207]. In blocking, the idea
is not to change sensitive values, but to remove them entirely [54]; this approach can for instance be
applied for association rule mining [230]. In merging/aggregation, the coarseness of attribute values
is increased by combining several values into one category. This technique is generally applicable
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but in general obviously reduces accuracy. In swapping, different values for attributes from different
records are swapped, preserving the overall per-attribute probability distribution but obviously not
protecting rare attribute values or relations between different attributes [191, 104]. In sampling, rather
than releasing data for the full population, only a subset is released.

In PPDP, the goal is to anonymize a dataset regardless of the data mining algorithm to be executed
on it. (This is also sometimes referred to as “tabular data protection”.) The most well-known PPDP
framework is k-anonymity [228]. The core observation of k-anonymity is that not just identifiers can
be used to uniquely identify a record, but also combinations of quasi-identifiers such as age, ZIP code,
and gender. To remedy this, values for these attributes are suppressed (i.e., deleted) or generalized
(i.e., replaced by a coarser value such as year of birth instead of date of birth) until the dataset satisfies
the k-anonymity criterium: for each combination of quasi-identifiers that occurs in the dataset, there
must be at least k entries in the dataset having exactly that combination of values. k-anonymity is
a criterion, not a method: different algorithms exist that each try to transform a dataset to meet this
criterion while removing as little information as possible. However, doing this optimally is known to
be an NP-hard problem [186].

It is well-known that the privacy provided by k-anonymity is limited [180], in response to which
several variants such as l-diversity and t-closeness have been developed. A more fundamental, mathe-
matical approach is differential privacy. While primarily developed for privacy-preserving querying, it
can also be applied to data publishing, but as discussed in [59], it is not clear if the amount of data that
needs to be removed to satisfy this definition still allows the resulting datasets to be used in practice.

6.1.2 Distributed privacy-preserving data mining

Distributed PPDM considers the problem to perform data mining on sensitive datsets from multiple
parties when there is no single party that is trusted to hold all of the data. Note that in some cases,
aggregates over multiple datasets can be computed from the aggregates of the individual datasets (e.g.,
the average over multiple datasets is itself a weighted average of the averages of its sub-datasets), but
in general this is not the case (as a simple example, think of computing a correlations between two
vectors where one data provider has one vector and another data provider has the other vector.

Multiple deployment models can be considered based on who performs the mining. In one model,
there is a single miner who collects data from many clients, each of which holds an individual record
about itself (e.g., association rule mining in [224]). In another model, a relatively small number of
parties each hold a sub-database, and they perform joint data mining by each contributing computing
power (e.g., [252] for support vector machines). In a final model, there can be a larger number
of parties holding a sub-database, but the joint data mining is outsourced to a smaller number of
computing parties (that themselves may or may not provide input) (e.g., [37] for general statistical
operations). In each case, the data can be horizontally partitioned, meaning that each data provider
holds all attribute values for one or more records; or vertically partitioned, meaning that there is a
common set of records for which each data provider holds a number of attribute values.

The MPC techniques developed in SODA fit into the second and third deployment model by provi-
ding cryptographic techniques by which to perform joint data mining without learning the underlying
inputs. In theory, every algorithm, so in particular every data mining algorithm can be performed
with MPC in order to fully protect the privacy of sensitive inputs. However, because of the large
performance penalty that this induces, in practice, often a “hybrid approach” is used in which MPC
is combined with local computation by the data providers and part of the computation is performed
in-the-clear by opening intermediate computation results that are deemed “sufficiently” aggregated
(see Section 6.1.4).
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Such hybrid approaches range from on the one hand approaches where the local computation is
complex and the MPC aggregation very easy; to on the other hand approaches where the local compu-
tation is easy and the bulk of the work takes place inside MPC. Because of efficiency, most approaches
are from the first category. For instance, approaches of this kind include the SVM classification proto-
col of [252] (where each party locally computes a some values that are securely summed up MPC and
then opened, so the MPC computation is trivial), the clustering approach from [154] based on local
density estimation, and the recent protocol for deep learning by gradient descent from Google [38].
As an example of an approach on the other side of the spectrum, consider the linear programming sol-
ver of [73], where the computation is performed fully on encrypted data and only the check whether
the stopping criterium has been met is performed in the clear (so the plaintext computation is simple).
(Hybrid approaches with a non-trivial MPC step are discussed later in this chapter.)

Several common patterns can be identified in the literature on distributed privacy-preserving data
mining. Above, we discussed the combination of local computation on sensitive data, secure aggre-
gation, and in-the-plain processing of the aggregate (in multiple iterations). Instead of using MPC to
aggregate the local computation results, it is also possible to instead add noise to (e.g., [101, 224, 89])
or mask (e.g, [217]) the input data or local computation results and then perform aggregation based
on this in the plain. Differential privacy can be used to rigorously bound the privacy leakage from
opening these intermediate computation results [137, 198]. Many variations on this idea exist. For
instance, it is possible to securely perform aggregation and add noise prior to opening the aggregate.
Another idea that has been successfully applied to clustering [185] is to use generative models: instead
of sharing real records, the records are summarized into a “generative model”: parameters to an algo-
rithm to generate representative synthetic records. The recipient then generates synthetic records and
uses these in its data mining algorithm instead of the real records. Finally, it is possible to locally train
a detailed model but share just a small part of it and combine those parts [239].

An alternative paradigm that has been applied with some success is to use MPC to transform one
instance of a problem into a random other instance; solve this other instance in the plain; and trans-
form this back into a solution to the original problem using MPC. This approach has for instance
been applied to linear programming [237], in which context also its main weakness has been expo-
sed, namely that it usually impossible to perform the transformation without preserving some of the
(sensitive) structure of the original problem [28, 164].

Also the PPDP problem has been considered in the distributed context. For instance, for the main
PPDP approach, k-anonymity, the goal is to produce a k-anonymous version of the combined dataset
of multiple data providers without actually having to share these datasets; this can be solved with
[138, 259] or without encryption [244].

6.1.3 Privacy-Preserving Querying

As discussed, the above approaches focus on protecting sensitive information from the data processor.
Clearly, if sensitive data has been removed by the data owner prior to providing the data for processing,
as with the approaches from section 6.1.1, then any data mining output will also not contain sensitive
information and hence can be disclosed. On the other hand, if mining happens by the data owner
without prior deletion of sensitive data, then care needs to be taken that the data mining output does
not contain sensitive information. For example, suppose patients are clustered and averages are given
over all patients in a cluster. In the extreme case, a patient may end up in a cluster by himself, in which
these averages are actually directly personal information. However, also in the less extreme case when
a cluster contains only few patients, the averages of the cluster are still statistically revealing a lot of
information about each patient in the cluster. The same problem occurs if the mining happens on
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encrypted data that is then decrypted for the recipient, as is the case with SODA. To address this
problem, a range of techniques for “privacy-preserving querying” (also known as “query editing and
inference control” [4]) are available. In SODA, these techniques are relevant for the Leakage control
component that aims to address exactly this issue.

The general setting for privacy-preserving querying is where a recipient can perform multiple
queries on the same dataset, and tries to learn as much sensitive data as possible by choosing queries
that are as revealing as possible. Main approaches to prevent the recipient from doing this include
modifying the query result (e.g., by adding noise or removing details) or underlying dataset on which
queries are run; and denying particular (combinations) of queries.

Numerous approaches for modifying query results are known. One case that has been studied
early on in the literature is association rule mining: in this case, data values in the output association
rules can be randomly perturbed [208] or details can be left out [230]. Aproaches like k-anonymity
[228] that can be applied to the disclosure of a full dataset, can also be applied in the setting when the
outout of a data mining algorithm consists of a number of records.

The main foundational technique that is adopted nowadays for protecting privacy leakage from
query results is differential privacy [93]. In this framework, the privacy leakage due to the result of
a query is formalized by stating that the probability that the query gives a certain outcome, can not
depend too much on the presence of any one particular record in the dataset. Mechanisms satisfying
this privacy notion typically achieve it by adding noise to each individual query result. For instance,
if the query is the mean age in a population, then the mechanism will first compute the actual age, and
then add noise based on a supposed, known distribution of ages. Note that clearly, as the same query is
executed multiple times on the sama dataset, each time giving a new value containing some noise, then
the overall uncertainty about the result will decrease. This is why differential privacy can applied in the
context where there is a “privacy budget”: a maximal amount of leakage that is allowed, such that few
accurate or many inaccurate queries can be performed before the maximum is reached. Differential
privacy has been applied in many data mining applications, including recommender systems [181],
decision tree classification [135], and clustering [233]; see [94] for a survey.

When MPC is used to protect sensitive data during processing (as proposed in SODA), it may need
to be combined with privacy-preserving query approaches to protect the sensitivity of the computation
results coming out of the multi-party computation. In SODA, this is handled by the leakage control
component. There is some prior work in this direction. In Rmind, a system to compute statistics over
sensitive data using MPC, results are protected by generalization, e.g., by using heat maps instead of
showing individual points in plots [34]. (Rmind also implements a form of query auditing by only
allowing queries that satisfy a user-supplied policy.) Several other works propose to combine MPC
with differential privacy as in SODA [29, 95, 255]: work that SODA aims to improve by applying it to
arbitrary corruption models and applying it to the particular data analytics algorithms to be developed
in this project.

Another possibility is to modify the underlying dataset prior to answering queries. One simple
mechanism to make it harder to infer information about the underlying dataset is to anwser each
query on a new random subset of the dataset [78]. Other approaches add noise [9], or represent the
data by means of a model such as a pseudo-random sketch and answer queries based on this model
[189].

Finally, leakage of sensitive information can be prevented by simply not answering queries that
would reveal too much sensitive information, an approach referred to as query auditing [4]. The first
works on this topic already appeared in the seventies, where leakage due to sum, mean and median
queries [81, 222] were considered. More recent work from the previous decade also considered the
problem that the fact that a query was denied itself leaks information, something that can be prevented
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by means of so-called simulatable auditing [149]. In this setting, apart from basic statistics, also select-
project-join queries on a database have been considered [187]. A further extension to the model also
considers queries that may modify the database [196].

6.1.4 PPDM and the Privacy-Utility Trade-Off

In this section, we sketch some results relating to the privacy-utility trade-off often seen in privacy-
preserving data mining. Fundamentally, approaches that aim to protect sensitive information by mo-
difying datasets or query results, have the problem that these modifications make the result of data
mining less accurate, i.e., they reduce data utility. Adding to this problem is the fact that it is hard
to decide how much information needs to be removed before a dataset can be considered sufficiently
anonymized, especially given that background information may be available to help, or may become
available later.

Several recent examples illustrate the latter point. A famous example is the Netflix dataset, that
was anonymized and released to stimulate people to experiment with improvements to Netflix’ re-
commendation algorithm; however, using background information many of these anonymized records
could be linked back to Netflix users [199]. Other examples include a dataset of search queries rele-
ase by AOL that could be traced back to AOL users [23], and a dataset of tennis matches containing
suspicious betting patterns that could be unintentionally traced back to the suspect players [79].

More generally, as discussed above, several ad-hoc privacy measures have been criticized for not
protecting privacy sufficiently in all cases. For instance, k-anonymity was found to be insufficient
in some cases [180], leading to several variants, including l-diversity and t-closeness and others.
Similarly, transformation-based approaches to privacy-preserving data mining in the case of linear
programming turned out to suffer from fundamental problems [28, 164]. Other examples include
[206, 100, 145].

Although differential privacy [93] is a more “fundamental” privacy notion with a rigorous mathe-
matical background, it too is not immune from the privacy-utility trade-off. In fact, depending on the
data mining algorithm and data it is applied to, differential privacy may require adding so much noise
that the data mining output is not usable anymore [229, 109]. For instance, when computing the mean
income per of a US county, differential privacy requires hiding the presence of any individual value
from the dataset, including very high incomes. In one case, the true value was $16,708, but a differen-
tially private query mechanism would deviate from this value by at least $10,000 88% of times [229].
Apart from this, understanding exactly what privacy differential privacy offers is subtle [150], and
there is no broad consensus on how privacy budgets for differential privacy should be chosen [167].

In SODA, the privacy-utility trade-offs posed by opening up intermediate values and applying
differential privacy to computation results, make the above discussion particularly relevant. Both
imply that, even if computations are perfectly secured with multiparty computation, still some leakage
of personal information is unavoidable. Therefore, controlling this leakage and assessing its severity
in real-world challenges are important parts of understanding the privacy guarantees of our overall
approach.

6.2 Privacy-preserving Data Mining using Multiparty Computation

In this section, we survey the state of the art in the MPC approach to privacy-preserving data mining.
For a proper introduction of this field, we refer to Lindell and Pinkas [171], who provide a tutorial-like
introduction to MPC-based privacy-preserving data mining with an emphasis on formal security ana-
lysis. Further, they discuss specialized constructions for some primitives in the two-party setting, like
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set intersection and computing the median. (The motivation for using such specialized constructions
is to reduce overhead compared to generic constructions of the same primitive.) Finally, the paper
emphasizes that MPC solves only a part of the problem in the context of privacy: the task of deciding
which function(s) may or may not be applied to privacy-sensitive data should not be omitted.

One might say that over the last decade a “Cambrian Explosion” has taken place in the field of
MPC-based privacy-preserving data mining: many papers emerged, (in particular, too many to cover
them all!), and of strongly varying quality. To arrive at a list of candidate papers for our survey, we
have started off by making keyword searches in research databases. We then further expanded this list
of search results by following references in those papers as well as by adding papers found in different
ways. Next, we have filtered this list by removing obviously weak papers. Instead of following the
categorical division presented in Section 3, we have created a categorization based on a manual clus-
tering of the main (data-mining-related) topics in the papers. These clusters seem to emerge around
applications where privacy is a natural aspect to consider, like classifiers (such as decision trees) in
medical applications, as well as recent world-wide hypes (like deep learning) or combinations thereof
(content recommendation systems, used by Internet firms like Amazon and YouTube). Roughly spea-
king, our categorization distinguishes between supervised methods (classification, regression, etc),
unsupervised methods (clustering, pattern mining), search/querying/matching problems (e.g., biome-
tric matching, genomic sequence matching), recommendation techniques (matrix factorization) and
auxiliary methods from statistics (computing the mean, median, statistical tests, etc.). As a disclaimer,
the review should not be regarded as being exhaustive, yet we did our best to cover most of the applied
research directions in the field of MPC-based privacy-preserving data mining by means of discussing
some of their exemplary papers.

6.2.1 Classification and Regression

Decision Trees Lindell and Pinkas [170] propose a method for securely learning an ID3 decision
tree on data that is horizontally partitioned between two parties, such that each party’s input remains
secret to the other party. An interesting part is a method for securely computing the natural logarithm
of a given value, which is accomplished through a Taylor approximation, computed via secure poly-
nomial evaluation. The approach is based on garbled circuits, and the paper presents a formal security
analysis in the semi-honest security model.

The work by Du and Zhan [90] is cited in some other papers as one of the early works in the
context of private decision-tree learning in the three-party setting. However, their “scalar-product
protocol” is described over the reals (completely unrealistic for the purpose of an implementation)
and does not come with a security proof.

De Hoogh et al. [74] also focus on the problem of learning decision trees and propose to use a
variant of ID3 based on the Gini index, which circumvents the expensive natural logarithmic computa-
tion from [170], and hence admits a faster implementation. The authors implement their algorithm in
VIFF and and assume honest majority in the semi-honest security model. They apply their oblivious
classifier to a real-world healthcare-related prediction problem.

Wu et al. [250] propose protocols for the private evaluation (as opposed to learning) of decision
trees and random forests of those trees in the two-party setting, with an application to medical diagno-
sis. The protocols are based on additively-homomorphic encryption and obvious transfer. They cover
both the semi-honest and malicious setting.

Bost et al. [41] focus on the private evaluation of several machine-learning primitives in the two-
party setting: hyperplane-decision-based primitives, the naive Bayes classifier, and decision trees. A
hyperplane-decision classifier consists of a set of k length-d vectors wi ∈Rd , i ∈ [k] and computes for
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a length-d input x ∈ Rd

k∗ := argmax
i∈[k]
〈wi,x〉,

where 〈·, ·〉 denotes the inner product. Many machine learning algorithms can be viewed as instances
of hyperplane-decision classifiers, like the perceptron (a basic building block for neural networks),
linear discriminant analysis, support-vector machines, and logistic regression. Evaluating the Naive
Bayes classifier (under the maximum a-posteriori rule) comes down to computing the argmax over
a list of probabilities. To evaluate a decision tree (ID3 or C4.5), the authors first represent the tree
as a polynomial, and then evaluate this polynomial. The authors observe that these three machine-
learning primitives can be implemented using the following three cryptographic primitives: secure
comparison, secure argmax, and secure inner product. The authors use Paillier encryption and leveled
homomorphic encryption to implement their protocols, and avoid floating-point arithmetic by scaling
all values using a large constant to integers.

Support Vector Machines Vaidya et al. [238, 252] consider an MPC-based privacy-preserving
version of a support vector machine (SVM) classifier. The authors cover the cases of horizontally,
vertically and arbitrary partitioned data. In the case of horizontally partitioned data, a secure sum is
computed using a ring-shaped communication pattern between the players: the accumulator value is
passed along the ring, and during the first cycle each player adds a one-time-pad-protected summand
to the accumulator. In the second cycle, each player removes the random pad, which finally yields
the summed value. In the case of vertically and arbitrary partitioned data, the protocol is based on,
respectively, the secure dot product from Goethals et al. [118], and some additively-homomorphic
encryption scheme.

Regression Nikolaenko et al. [202] present a method for privacy-preserving linear regression.
(More precisely, they focus on ridge regression, which is an L2-regularized variant of linear re-
gression.) Their model of (n+ 2)-party computation closely resembles that of [201] (discussed in
Sec. 6.2.8): there are n users, one evaluator and a helper-party called “crypto service provider”. Each
user i has one datum (xi,yi) where x ∈ A d is a vector and yi ∈ A , for some finite alphabet A .
Each user precomputes Ai := xixTi and bi := yixi, encrypts those element-wise using an additively-
homomorphic encryption scheme, and submits the resulting ciphertexts to the evaluator. The remai-
ning part of the regression procedure is then executed as a garbled circuit between the evaluator and
the helper. This remaining part comes down to summing the ciphertexts that correspond to the same
element in the matrix A or vector b, obliviously decrypting the summed ciphertexts, and (obliviously)
solving the resulting linear system,10 for which the authors choose the Cholesky decomposition. They
implement the scheme using FastGC [129] and use fixed-point arithmetic for the computations.

In [141], Marc Joye extends on the ideas presented by Nikolaenko et al. [202] by replacing the
garbled circuits phase by a blinding with uniformly random R,S ∈ GL(d,Z/NZ) by utilizing the
homomorphic properties of the encryption. After which the crypto service provider opens the blinded
values and solves RA S β ′ =Rb in the clear. The crypto service provider returns the result β ′ to the
evaluator who extracts the solution to A β = b as β = S β ′.

Gascón et al. [116] study the same ridge regression problem but consider the data to be horizon-
tally partitioned instead. The main difference with [202] lies in the first phase of the protocol in which
user participation during the online phase is required, while the second phase remains largely the

10Here, we omitted the fact that the evaluator adds λ · I to A before solving the system, where λ is a positive scalar and I
is the d×d identity matrix.
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same. For the first phase, each pair of parties performs a 2-party secure dot product protocol to com-
pute (2-party) shares of ai, j = xT

i x j and bi = xT
i y. Note that this generally involves O(d2) interactive

secure dot product computations (where d is the number of features). Therefore, no scalability issues
occur when n increases to one million records. For the second phase, Gascón et al. study fixed point
conjugate gradient descent (FP-CGD) as potential alternatives to Cholesky’s decomposition, which
is used in [202]. They conclude that their FP-CGD algorithm, tailored for fixed-point computation,
scales better in the number of features than Cholesky.

Graepel et al. [122] consider machine learning tasks computed by a cloud service provider on
confidential data. The confidentiality of the data is protected by a leveled homomorphic encryption
(LHE) [43, 44], which is a version of somewhat homomorphic encryption (SHE) for which noise only
grows polynomial in the levels (circuit depth) of multiplications. This approach portraits some of the
difficulties commonly encountered in the field of secure computation. It should be noted that the aut-
hors decide against the use of fully homomorphic encryption (FHE) [117], which allows an arbitrary
number of operations on ciphertexts, because it is known to come with a rather costly bootstrapping
procedure. They define the notion of a D-polynomial learning/prediction algorithm, by which they
refer to machine learning functions (including a training phase) which are polynomial of low-degree
D. The resulting construction is limited however, since it disallows the use of certain common primi-
tives, e.g. secure comparison (unless the inputs are already bit-wise encrypted), and secure division.
Instead they focus on approximation (e.g. truncated Taylor series) to accommodate for the limitations
of the setting. Graepel et al. present concrete measurements of implementation of Linear Means clas-
sification and approximate Fisher’s Linear Discriminant classifier. Communication cost are excluded
from their experiments and real numbers are converted to decimal fixed-point with scaling factor of
102 and encoded as binary polynomials. The experiment results, as is expected with homomorphic
encryption, show a significant cost in computation time, even for a limited number of features and
entries. For example, the approximate Fisher’s Linear Discriminant classifier computed on 5 features
and 100 entries for both training and testing takes roughly 5.6 hours to train, 10 seconds to classify,
and 27 minutes for input encoding and encryption. While in the clear these numbers are reported as
roughly 2.6E-3 seconds for training and 1.72E-6 seconds for classification.

Bos et al. [39] focus on the private evaluation of logistic regression models in the two-party setting
with leveled homomorphic encryption. The models are evaluated by computing Taylor approximati-
ons. Arithmetic over real numbers is simulated by working over the rationals.

6.2.2 Neural Networks

Barni et al. [25] focus on evaluating neural networks in the two-party semi-honest-security setting.
They rely on three primitives, namely scalar-product, comparison and polynomial evaluation, and
instantiate those, respectively, based on a homomorphic encryption scheme, garbled circuits, and
oblivious transfer.

Liu et al. [174] propose MiniONN (Mini Oblivious Neural Network), an approach for making
oblivious predictions using a existing neural-network model. The paper is in the two-party setting; it
considers a client and a server in the cloud. When evaluating the network to obtain predictions, the
client’s input as well as the prediction output remain secret to the server, while the model remains
secret to the client, beyond what is revealed by the prediction output. I.e., the prediction output inevi-
tably leaks some information about the model. The authors assume that the network has already been
trained (as their objective is to perform oblivious prediction with existing neural-network models), and
do not consider the problem of training the network in an oblivious way. MiniONN employs fixed
point computation (computations over the integers with truncations). The authors make extensive use
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of “dot product”-triples and propose a homomorphic-encryption-based dot-product-triple-generation
protocol suitable for SIMD (single-instruction multiple data) batch processing. This protocol is proven
secure against semi-honest adversaries (either client or server). The authors have made a test imple-
mentation is based on ABY [76], which offers a “hybrid” MPC framework (a mix of secret-sharing
and garbled circuits), and YASHE [40] and SEAL [87] (for homomorphic encryption).

Rouhani et al. [226] also focus on the evaluation (rather than training) of a neural network in a
client–server setting. They focus on evaluating convolutional and deep neural nets using garbled cir-
cuits, and design circuits for basic neural-net functionalities like convolution (implemented as a secure
weighted sum), max- and mean-pooling (implemented resp. as secure max and mean computation)
and for computing non-linearities: hyperbolic tangent, sigmoid, softmax (implemented with a COR-
DIC) and ReLu. Security holds in the honest-but-curious model (but can be extended to malicious
secure with known techniques.)

Bonawitz et al. [38] design a constant round protocol to train a neural network by means of
federated learning. Here, federate learning means that each user trains a model locally (on a local
dataset), after which the trained model parameter vector xu of each user u is aggregated to a centralized
server and summed to obtain a joint model ∑u∈U xu. The aggregation should protect the privacy of
the users’ data: this means that the server must not learn anything about the model parameters from
individual users, beyond what can be deduced from the aggregated model, i.e. the sum ∑u∈U xu. This
privacy is achieved by the use of pairwise one-time-pads pu,v between each pair of users u,v such that
pu,v + pv,u = 0 (mod R) [2]. Specifically, the authors consider a setting in which users participate in
the protocol via a mobile device. In this setting they require robustness against users dropping out
during the protocol. As in [121], they achieve this robustness property through the use of threshold
secret sharing so that masks from dropped users can be reconstructed as long as a minimal number of
users remains. Unlike [121], Bonawitz et al.’s recovery method is robust even if additional users drop
out during the recovery phase. The authors present a security proof against semi-honest adversaries
in the plain model, and a proof for the malicious case in the random oracle model. Privacy against
malicious adversaries requires an additional round in order to perform a consistency check.

6.2.3 Search Problems

Osadchy et al. [210] propose a system for privacy-preserving face recognition in the two-party client–
server setting. The ideal functionality that is realized by the system takes as input from the client
a single photo p of a face, and from the server a list L of faces, and outputs a bit telling whether
there exists a photo in L that closely resembles p. A key idea from the paper is to propose a novel
representation for a facial image. For this representation, a face is divided into a number of predefined
parts (nose, eyes, mouth, etc.) and for each part there is a predefined list of features, called words in
the paper, where each such word is either present or absent in a given facial image. Then, a facial
image can then be represented as a set of words from various image parts that are present. Under this
representation, and by representing sets as binary vectors, the task of comparing two images reduces
to computing a Hamming distance—an operation that can be quite easily implemented as a secure
computation. Osadchy et al. use additively-homomorphic encryption and oblivious transfer. Their
construction is secure against semi-honest adversaries.

Erkin et al. [96] also propose a semi-honest, privacy-preserving, face recognition system for the
two-party client-server setting. The server owns m database images represented as n dimensional vec-
tors. They assume that the server performs Principal Component Analysis (in the clear) beforehand
on the training images and pre-computes the (orthonormal) eigenvectors u1, . . . ,uk corresponding to
the k(� m) largest eigenvalues. The server also pre-computes (again in the clear) the feature vec-
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tor projections Ω1, . . . ,ΩM of the database images into the subspace span{u1, . . . ,uk}. In the online
phase, the authors use the homomorphic properties of Paillier encryption [212] to securely project the
(encrypted) input face image into Ω̄∈ span{u1, . . . ,uk}. Note that the ui are considered sensitive data,
as they represent a significant portion of the information in the database. After projection, the square
Euclidean distance between Ω̄ and every database image Ωi is computed. The protocol finishes with
secure comparison, based on DGK encryption [68, 69], to determine whether any of the distances is
shorter than a certain threshold T , which will be considered a match. The authors implemented their
approach with a database size of m = 320 images with vector length n = 10304. The two parties
are implemented within the same machine as separate threads, so there is no network latency in their
experiments. Querying one image is reported to take roughly 40 seconds. When the (computationally
heavy) randomization factors of the homomorphic encryptions are pre-computed, the online execution
time drops to 18 seconds.

The iDASH workshops [131] are annual competitions for privacy and security of genomic data.
One of the challenges of 2016’s iDASH competition was to devise a privacy-preserving approxima-
tion algorithm for the k-closest match problem, defined as follows. Given a database with genomic
sequences S1, . . . ,Sm and a user query sequence Q, find (an approximation to) the indices of the k data-
base sequences with smallest edit distance to Q. Edit distance computation between two sequences of
length n typically runs in O(n2) time [62]. This motivates the use of approximations, such as sequence
partitioning methods, which approximate edit distance by comparing short sequence blocks. In [15]
such a sequence partitioning approximation is proposed, which runs in near-linear time. Nonetheless,
for the k-closest-match problem, this still doesn’t scale well enough in terms of the database size m.
Asharov et al. [17] won this particular iDASH challenge with an approximation algorithm secure
against semi-honest adversaries. The straightforward solution of fixed-length blocks results in a poor
approximation, because insertions and shifts in the sequence (especially at the start of the sequence)
can cause major misalignment issues. Hence, Asharov et al.’s solution starts by splitting the genomic
sequences Si and query Q into blocks {Si,1, . . . ,Si,n} and {Q1, . . . ,Qn} of varying block size, determi-
ned via the Wagner-Fischer algorithm [241] with the help of a public reference sequence R. They then
approximate the edit distance by ∑l χl ·ED(Ql,Si,l) where χl = 1 if Ql ∈ Tl := {S1,l, . . . ,Sm,l} and 0
otherwise. The approximation only adds a block edit distance ED(Ql,Si,l) to the sum if the block Ql
lies in the column Tl , this allows them to pre-compute edit distances (in the clear) within a column to
speed up the computation. This also means that for a good approximation, it is important for R to be
sufficiently close to the database queries, which implies that such a choice for R inevitably leaks some
information about the database sequences. In addition, a chosen-plaintext attack can fully recover the
block values Tl . Hence, the approximation is not a secure approximation in the sense of Feigenbaum
et al. [103], because the approximation leaks more information than the original computation. The
authors report real-world performance in terms of accuracy and speed. They consider databases with
higher variability (≈ 5%) than a previous solution by Wang et al. [245] (≈ 0.5%).

6.2.4 Pattern Mining

In [36], Bogdanov et al. implement four privacy preserving algorithms for frequent itemset mining,
as a proof of practical applicability of their Sharemind framework. In all algorithms they search
for all sets χ which are frequent (i.e. support(χ) ≥ t), while the database rows/columns (depending
on horizontal or vertical partitioning) are secret shared. A key observation is that every subset of a
frequent set is frequent. This observation leads to the breadth-first Apriori algorithm [8, 178] and
the depth first Eclat algorithm [253]. For both aforementioned algorithms they also implement a
hybrid algorithm, Hyb-Apriori performs better in terms of memory footprint at a very slight cost
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of performance and Hyb-Eclat has slightly increased performance at the cost of a small increase in
memory consumption. The Sharemind framework is equipped with three nodes/parties for the multi-
party computation, which is proven to be secure in the semi-honest security setting separately in [37].

6.2.5 Clustering

Jagannathan and Wright [136] introduce the (two-party) concept of arbitrary partitioned data ser-
ving as a generalization of vertical and horizontal partitioned data. Arbitrary data partitioning, in
the two party setting, means that every database entry xi, j belongs to either Alice or Bob. So every
transaction/object ti = {x1, j, . . . ,xi,l} is split between the two parties: ti = tA

i ∪ tB
i . Note that if tB

g = /0,
then tg = tA

g belongs completely to Alice, and Bob is not aware of the existence of transaction g. The
authors present a two-party privacy-preserving k-means clustering protocol on arbitrary partitioned
data in the semi-honest setting. In each iteration, the protocol assigns each database object to each
candidate cluster and new candidate cluster means are computed accordingly. The cluster means µi

are (additive) shared between the two parties. The shared distance between an item and cluster mean
[d(ti,µ j)] is largely computed locally, after which the index of the minimal mean distance cluster is
located via a garbled circuit. Cluster means are updated in a similar fashion: the two parties compute
local sums of cluster object entries and input the result in a garbled circuit which outputs the new
shared cluster mean [µ j], alternatively they can compute the new shared cluster mean via a secure
inversion and a secure multiplication using Beaver triples [21]. The k-means clustering algorithm
stops when there are no more substantial improvements. So after each iteration, the protocol checks
whether the cluster centers have significantly changed via another garbled circuit secure comparison.
the protocol leaks information (as the authors remark in their performance analysis) because it reveals
intermediate information, namely the assigned cluster number of the objects after every iteration. This
information leaks the amount of objects and can also leak individual party data.

In [46], Bunn and Ostrovsky also present a two-party privacy-preserving k-means clustering pro-
tocol on arbitrary partitioned data. Their main contribution consists of a construction which does not
leak intermediate information. Their protocol refrains from releasing the object cluster numbers at the
end of an iteration. Bunn and Ostrovsky take the single database k-means algorithm as described in
[211], which has provable correctness, and extend it to the privacy-preserving two party setting in the
semi-honest security model. Bunn and Ostrovsky hide the intermediate information by computing the
new cluster means µ j under a homomorphic encryption.

Clifton et al. [169] instantiate expectation–maximization (EM) mixture clustering [139, 77], in a
privacy-preserving and distributed way, by making use of Benaloh’s secure sum protocol [32]. EM
mixture clustering is a form of probabilistic clustering by means of maximum likelihood parameter
estimation. They assume the data is horizontally partitioned. As in [136], every iteration reveals
assigned cluster number of the objects. So intermediate information is leaked within the protocol. In
practice this means that the protocol requires at least three parties and no collusion to be secure.

6.2.6 Secure Statistics

Kiltz et al. [151] discuss securely computing the mean in the two-party setting, and moreover they
point out a flaw in a protocol for securely computing the mean by Du and Attalah [88]. Aggarwal
et al. [5] propose a method for securely computing the median (or, more generally, the k-the ranked
element. DeBenedetto et al. [75] focus on the secure computation of standard deviation and Chi-
squared tests. They implement their methods in PICCO [257], a threshold-linear-secret-sharing-based
MPC compiler framework.
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6.2.7 Oblivious Data Mining on Graphs

Meng et al. [184] study the problem of answering shortest-distance queries on large encrypted graphs
(size in the order of millions of vertices) in the client–server model, where the encryption is of a
special kind such that it allows for privately querying the distance between two vertices. Actually,
the authors focus on the related problem of answering shortest-distance queries approximately (for
example, within a constant factor), using the concept of distance oracles. The paper uses a particu-
lar class of distance oracles called sketch-based distance oracles (recall that we already encountered
sketches in Section 5), which precompute a sketch skv for each node v, such that in the online phase,
the approximate shortest distance between two nodes u and w can be efficiently computed from their
sketches sku and skw. The authors adapt an existing adaptive semantic security notion to the setting of
distance-oracle encryption and formally define the types of leakage that can occur. They also propose
three distance-oracle encryption schemes: one scheme with low computational complexity through
the use of symmetric-encryption primitive, one scheme based on somewhat-homomorphic encryption
having optimal communication complexity, and a third scheme that enjoys low computational as well
as low communication complexity at the cost of some privacy leakage. The security of all schemes
is analyzed formally. Finally, the author have implemented the schemes and run some experiments.
We give a rough characterization of the performance of the third scheme: (a) sketch construction time
(per node): 20ms, (b) sketch size (per node) 20 KB, (c) communication per query: 34 bytes.

6.2.8 Recommender Systems

Nikolaenko et al. [201] present an (n+2)-party protocol for an oblivious recommender system based
on matrix factorization, where the n+2 parties consist of n users, one recommender and one “helper
party” (named crypto service provider). In this paper, the work “oblivious” means that the recommen-
der does not learn the ratings of the users, nor which items each user has rated. The protocol is based
on (two-party) garbled circuits, executed between the recommender and the helper, and on a partially
homomorphic encryption scheme, used by the users to encrypt their ratings. A partially homomorphic
encryption scheme supports the addition of (public) constants under the encryption; note that this is
a strictly weaker notion than an additively-homomorphic encryption scheme. The main body of the
paper assumes the honest-but-curious security model, but outlines how the protocol can be extended
to achieve active security. The matrix factorization method is regularized least-squares minimization,
via gradient descent. An important contribution of the paper is a trick to prevent O(nm) complexity
(where m are the number of items) in each gradient-descent iteration by the use of Batcher’s sorting
network. With this technique, the asymptotic complexity becomes (m+M) log2(m+M) per iteration,
where M is the total number of ratings (from all users). The protocol has been implemented in FastGC
[129], and uses fixed-point arithmetic. The authors perform simulations to measure execution times
and explore the trade-off between accuracy and bitsize of the fixed-point representation.
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7 Conclusion

SODA’s Work Package 2 will focus on privacy-preserving data mining from the perspective of cryp-
tography, or more precisely, secure multiparty computation (MPC), as opposed to the (commonly
studied) alternative perspective of data perturbation, such as differential privacy. The present docu-
ment attempts to survey the current state of the art in this field.

To put this survey on solid grounds, we have started this document by reviewing primitives and
preliminaries from the field of secure multiparty computation. In that part, it already becomes clear
that there are several mismatches between results from the field of MPC (and features provided by
MPC frameworks), and the typical requirements from data mining methods. Arithmetic in MPC is
provided naturally over a finite ring or finite field, while in data mining (or, if you wish, numerical
mathematics like computational linear algebra) computations are often assumed to be performed in
floating point arithmetic. Many results in the MPC literature about linear algebra are over some finite
field, instead of over (some approximation of) the reals. Furthermore, in MPC the relative ordering of
operations (addition, multiplication, comparison, etc.) in terms of their strength (a term from compiler
technology, by which we mean a quantity that is proportional to the execution time of an operation,
see also [60]) is very different from an ordinary CPU. In MPC, the strength of an operation is not
only determined by its computational complexity, but also depends on the MPC paradigm (garbled
circuits, arithmetic secret-sharing, homomorphic encryption) that is used, which in turn has a strong
influence on the round complexity of basic operations. Moreover, latency and throughput depend on
the particular type, topology and geographical aspects of the network that interconnects the players.
Hence, design decisions deeply rooted in (data mining) algorithms might need to be revisited when
such an algorithm is adapted to be run as a multiparty computation, because those decisions were
originally made with the goal in mind to run the algorithm on an ordinary computer.

In Section 3, we have introduced data mining and machine learning, by first giving an overview
of the main data mining tasks. With the help of Domingos’ categorization [83], we have aimed to
connect those tasks to the wide variety of existing data mining methods described in the literature.
We have covered the “data mining process”, i.e., all steps between a high-level question about data
and, ultimately, the practical deployment of a data-processing system. And we discussed classes of
applications and their important aspects for data mining.

A particular topic in the field of data mining is the study of data streams, which we discussed in
Sections 4 and 5. A main theme in this subfield is to design algorithms that are capable of processing
lots of data while only having a small memory footprint and, typically, having a low computatio-
nal complexity as well. Especially the latter aspect aligns well with the requirements of running an
algorithm as a multiparty computation.

Finally, in Section 6, we have surveyed the state of the art in the MPC approach to privacy-
preserving data mining. We did our best to review relevant papers from the recent “Cambrian Explo-
sion” of papers in the literature, and to cover most of the applied research directions within the field by
means of discussing some of their exemplary papers. Nonetheless, an exhaustive review of all papers
would have been impossible within the scope of this survey, simply because there are by now already
too many papers to mention. Interestingly, there seem to some gaps in the literature in the direction
of secure ensemble methods (like secure boosting) and secure variants of Bayesian inference11 like
Markov-Chain Monte Carlo methods and variational inference techniques. Also, we have only seen a
few works in the literature that consider the streaming setting in the context of MPC. Hence, we see
ample opportunities in the SODA project to perform further research into these directions!

11Here, we do not mean the “Naive Bayes” classifier.
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